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Iterated towers of number fields by a quadratic map defined

over the Gaussian rationals
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Abstract:

An iterated tower of number fields is constructed by adding preimages of a base

point by iterations of a rational map. A certain basic quadratic rational map defined over the
Gaussian number field yields such a tower of which any two steps are relative bicyclic biquadratic
extensions. Regarding such towers as analogues of Zs-extensions, we examine the parity of 2-
ideal class numbers along the towers with some examples.
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1. Introduction. Let ¢ be a rational map
of prime degree p which is defined as the rational
function ¢(x) € k(z) over a number field k. Let
{bn}y<nez be a sequence of algebraic numbers such
that gg(bm_l) = b, for all n > 0. For a finite extension
K /k(bg), we obtain a sequence

KCKICKQC'”CKHC”'CKOOZUKn,

n>1

where K, = K(b,) for each n > 1. The number field
K, is contained in a Galois extension K (¢ "(by)) of
K. If ¢ is ‘post-critically finite’, i.e., the orbits
{0"(¢) }y<pez of any critical points c of ¢ are finite,
then the number of primes of K ramifying in
K(¢~®(by))/K is finite ([1,5]), and such iterated
extensions have been constructed and studied in
various situations (see e.g. [2,3]).

If K,,/K is a cyclic Galois extension of degree
p" for all n > 1, then K, is a Zy-extension of K,
i.e., Gal(K/K) is isomorphic to the additive group
Z, of p-adic integers. For example, K.,/K is the
cyclotomic Zs-extension if ¢(z) = 22 — 2 and by = 0.
The growth of the p-parts of the class numbers
along a Z,-extension K. /K is described by
Iwasawa’s class number formula ([9]), and such
a formula has been extended to some non-Galois
towers ([4,11] etc.) and p-adic Lie extensions
([6,12,15] etc.). One of the most important con-
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jectures in Iwasawa theory is Greenberg’s conjec-
ture ([7]) which states that the p-parts of the class
numbers are bounded along the cyclotomic Z,-ex-
tension of a totally real number field. Analogous
problems can be also considered for iterated exten-
sions K, /K by post-critically finite ¢, as in [17]
where the case of ¢(x) = 2% — 2 has been considered.
In particular, it is a basic problem to find many
iterated extensions K, /K such that the T-ideal
class number of K, is not divisible by p for all
sufficiently large n and for a finite set T" of primes of
K ramifying in K.,/K. For a finite set T of primes
of a subfield of a number field F, the T-ideal class
number |CI"(F)| of F is the order of the T-ideal
class group CI'(F) = CI(F)/{[w]; w| [ ey v), which
is the quotient of the ideal class group CI(F)) by the
subgroup generated by all classes of prime ideals
w lying over T.
In this paper, we consider iterated extensions
K. /K by a rational finction
(i) + (i)™ ( 1)
B (P

R bt

X

of degree p = 2, which is defined over the Gaussian
number field Q(i), where i = /—1. The map ¢ is
post-critically finite, and comes from an endomor-
phism of the elliptic curve F:3? =a3+ 2 with
complex multiplication by Gaussian integers Z][i]
(see Remark 3.3). Then, regarding K./K as an
analogue of a Zs-extension, we examine the parity
of |CI"(K,)| along the tower of iterated extensions
{Ky}<pez- The main result is the following theo-
rem, which can be seen as a partial refinement of
[5, 85] in a special case. Put a condition C(b):
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(VB2 —1,/b(b£1),Vb£1,Vb} Nk(d) =

for each algebraic number b. We denote an abelian
2-group by its type.

Theorem 1.1. Suppose that i€k and
P(x) =L (x—21). Let by € k be an algebraic integer
satisfying C(by). Put k, = k(b,) forn > 0. Put K =
k(v/by), and put K,, = k,(v/by) forn > 1. Let T be a
set of primes of k lying over 2. Then the following
statements hold true for eachn > 1.

(a) kni1/kn-1 is a [2,2]-extension.
(b) Kii3/K, is a [2,4]-extension unramifid outside

2.

(¢) If Kyy2/K,, is totally ramified at any prime
lying over 2 and 2{|CI'(K,)|, then

21| CI"(K,,)| for all m > n.

In the proof of Theorem 1.1, the notation K|
denotes either k& or K according to whether
V/bo(b3 — 1) € k or not. Then we will see that the
statements (b) and (c) also hold true for n =0 if
V(b3 — 1) € k.

Remark 1.2. For by € k, the conditions

bo) and +/by(b3 — 1) ¢ k are satisfied if and only
if k(v/bo, vbo + 1,vby — 1)/k is a [2,2, 2]-extension.
If \/by(bi —1) € k, then the condition C(b) is
satisfied if and only if k(vbo,vby +1)/k is a
2, 2]-extension. The point (by,1/bo(bi — 1)) is a
k( bo(b2 — 1))-rational point of the elliptic curve
E =% -z

2. Proof of Theorem 1.1.

2.1. Preliminaries. Suppose that ¢ is defined
as (1), and k is a finite extension of Q(i). For b € Q,
we have ¢(V) = b if and only if b + 2bit' — 1 = 0,
ie.,

Vo= —i(b+ Vb2 —1) = <—b_11i+l Vb“) .

Then k(V) = k(b, Vb —1). Note that 2i = (1 +1)°.
Lemma 2.1. Assume that i € k and that the

condition C(b) is satisfied for b€ Q. Let b and b"

be algebraic numbers such that $(b') = b and ¢(b") =

b'. Then k(")/k(b) is a [2,2]-extension containing

three quadratic subextensions k(b, /b(b+ 1)), k(V/

Moreover, the condition C(V') is also satisfied.
Proof. Let

f(z) = 2" + 4ba® + 22° — 4bz + 1 € k(b)[7]

be the numerator of ¢?(z) —b = _4’;(;:2%. Note that
¢(— 1) = ¢(x). Since ¢(b") = V' and ¢(V') = b, we can

easily see that the four roots of f(z) are
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1 b +1

(2) bNa - ﬁv b1 )

and hence k(b")/k(b) is a Galois extension and
[k(b") : k(b)] < 4. Moreover, one can directly show

that
LR ?

o 4b(b— 1),

which implies that +/b(b— 1) € k(V").

condition C(b) is satisfied,
k(") = k(b)(y/b(b — 1), /b(b + 1))
and Gal(k(b")/k(b)) ~ [2,2]. Thus we obtain the

former statement.

Since [k(V"): k(V)] =2, we have Vb2 —-1¢
k(). Recall that &2 +2bil) —1=0. Since
Ny iy (0 (0 £1)) = =Ny oy (0 £1) = £(1+1)°b,
and since vb¢ k(b) by the assumption, we have
VU £1) ¢ k() and VI £1¢ k(b'). Note that
k(") = k() (VY2 = 1) = k@)(VOY). Tf VY € k),
then k(b") = k(V)(v/b), in particular k(v/b)/k(b) is
a quadratic subextension of the [2,2]-extension
k(b")/k(b).  This 1mphes that (\/5) =
k(b,/b(b—1)) ) = k(b,\/b(b+1))
vVb—1€k(b) or \/FE k(b). Thlb is a contra—
diction. Therefore v/’ ¢ k(V'). Thus the latter state-
ment is also obtained. ]

Remark 2.2. Since ¢? is defined over Q,
f(z) is defined over Q(b). Put g(x) = +1/z. Then
g '(x) = 2%, and a conjugate

1 1
(o0 =~ 5 (-2+7)
T
is also defined over Q.

2.2. Field theoretic part. Unless otherwise
noted, we may suppose that by € k is not necessarily
an algebraic integer.

Lemma 2.3. IfC(by) is satisfied, then for all
n >0, C(b,) is satisfied, and kpyo/kn is a [2,2]-
extension containing three quadratic subextensions
kn( bn(bn + 1))7 kn+1 = kn(\/ b% - 1)

Proof. We obtain the statement by using
Lemma 2.1 inductively. t

Throughout the following, we assume that
C(bo) is satisfied. Recall that K,, = k,(y/by) for each
n > 1, and put

No={1<neZ| b€k}
—{1<neZ|Ky= k).

Since the
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Note that n € Ny if n > min Nj.

Lemma 2.4. Ifn>1, then K, 1 = K,(vb,).
In particular, K, =k, and kyy1 = k,(v/b,) for all
n € Ny.

Proof. Recall that k.1 = k,(vb,_1b,) for all
n > 1. Then K, 11 = K,,(v/b,_1b,). If V/b,_1 € K, for
n > 1, then K, = K, (v/b,) and v/b, € K,,,1. Since
Vbo € K1, we obtain the claim by induction. O

Lemma 2.5. K,.3/k, is a Galois extension
for each n > 0.

Proof. Recall that —% is the conjugate of
bn.1 over k,. Then there exists 7 € Gal(Q/k,) such
that b ., = — ﬁ Since kyy3/kny1 is a Galois
extension, the conjugate of k,. 3 over k, different
from k.3 itself is A7, o =k(b],5). Therefore
kn+3k,L+32— knys(b],4) is a GaloisT extension of fcn.
bSu;ﬁ) ¢b( T%) =by,, we have b ., € {byj2, — s
bz; 1,—b”;+1 (see (2)). If b7, is either b,.o or

i1 = 00 5) = byy1, which implies a
contradlctlon that k,,1 C k,. Therefore b7

b

n+2 —
bnyo+1 T b1
e I or b .,= T Then (b +2) i —1=
n+2 — T —
(braF1)*" Since bn+3 - (bn+2 + (bn+2) 1)?

k;+3kn+3 = k'rH—S(\/W) c KrH—S by Lemma 2.4.
Since [Kpy3: kny3] <2, we have K, 3 =Kk} ko3
if /b2 ¢ k3. Suppose that /b, 2 € k,y3. Since
kj(\/bjflb]‘) = Kj+1 C kn+3 for any n+2>j52>1,
we have /bj_1 € k43 if \/E € kni3, and hence
Vbo € kpys by induction. Then K, 3 = ki3 =
kl . skny3. Therefore K, 3/k, is a Galois extension.
O
By Lemma 2.3, kui1(3/bps1(bns1 +1)) is a
subextension of k,3/k, of degree 4. Since

_ ( bn+l(bn+1 + 1))2 -1
1 —2byi ’

one can easily see that the minimal polynomial of
bp1(bpi1 + 1) over k, is

anrl

(3) z' +anz’+c,
= 2 + (40% 4 20,0 — 2)2® + bu(1 +0)°.
Then
(4) cu(a® —4e,) = 4b, (0% — 1)(1 +14)*(2b, +)°
=b,(b%> —1) mod (k)°.
Lemma 2.6.
are equivalent:
(a) No£0.
(b) 1 € Ny, i.e., Ny is the set of all positive rational
integers.

) Vb2 —1) € k.

The following three statements
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Proof. (a) = (b): Put my = min Ny. Suppose
that ng > 3. Then K,, =k, which is a Galois
extension of k,,_3 by Lemma 2.5. Since /by & ky,—1
and /by € ky,, we have k1 N K,,_3 = ky,—3 and
kn, = Kpy—1. Since ky,—1/kn,—3 is a [2,2]-extension,
Eng/kno—3 is a [2,2,2]-extension. In particular,
Eng—2(\/bng—2(bng—2 + 1)) /kn,—3 is a [2,2]-extension.
By (3), we have ,/c,, 3 € ky,—3 (see e.g. [10, Cor-
ollary 2.2.4]), i.e., \/by,—3 € kn,—3. This contradicts
the validity of C(bn,—3) by Lemma 2.3. Therefore
ng <2 if Ny # (. Suppose that mg=2. Then
Vb € ks, and hence k(v/by)/k is a quadratic
subextension of the [2,2]-extension ko/k. Since
Vbo & ki, ie., k(vby)#k, we have -either
k(v/bo) = k(y/bo(bo + 1)) or k(v/bo) =
k‘( bo(bo — 1)) Then bg+1€k or \/by—1 € k.
This contradicts to the condition C(bg). Thus we
have ng =1 € Nj.

(b) & (c): We have /by € ki if and only if
k() = k(B — 1), ie., /Bo(B2 — 1) € k. O

By Lemma 2.6, we have K = ki = ko(v/bo) #
ko if Ny # 0. Put

ko it No # 0,
Ky = )
ko(v/bo) if N = 0.
Then k, N K, =k, and K,, = k,,K,, for any m >
n > 0. By Lemma 2.3, we obtain a diagram

K Ko

~ \
77+1 Kn+2

Ko
= K,(\/bp(b, £1)).
The following two statements

Kn+3

\/\ )

for all n > 0, Where Kf
Lemma 2.7.
hold true:
- If Ng # 0, then kyy3/k, is a [2,4]-extension for
each n > 0.
- If Ny =0, then K, 3/ K, is a |2, 4]-extension for
eachn > 1, and

Ko = 5o (Vo — 11/ (Vi + D )
V=D ).

Proof. By Lemmas 2.4 and 2.5, K, 3/K, is a
Galois extension of degree 8 for each n > 0. Since
[Kf,, : K,] =4, the polynomial (3) is irreducible
over K,,. If n > 1, K,,(1/b2 — 1) = K41 = K,,(v/by)
by Lemma 2.4, which implies that /b, ¢ K, and
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b,(b2 — 1) € K,. By Lemma 2.6, /by ¢ k=K
and /by(b3 — 1) € ky = K if Ny # 0. Hence /¢, =
(144)vb, ¢ K, and +/c,(a2 —4c,) € K,, for all
n > 6 (see (4)), where § =0 if Ny # 0, and 6 =1 if
Ny = 0. Therefore K,TH/K,I is a cyclic extension of
degree 4 (see e.g. [10, Corollary 2.2.4]) if n > ¢. This
implies that K, 3/K, is a [2,4]-extension for all
n > 6. In particular, we obtain the statement for
Ny # 0. Suppose that Ny = (). Then z* + agz® + ¢y is
also the the minimal polynomial of /by (b; + 1) over
Kj. Recall that by(by +1) =1 — by(2byi — 1). Since
\/5:(1—&-1)\/%6}(0, K;FZK()( bl(b1+1)) is a
[2, 2]-extension of K| (see e.g. [10, Corollary 2.2.4]).
Then the octic Galois extension K3/K; contains
two distinct [2, 2]-extension K| /Ky and K»/Kj, and
hence K3 = K, K| is a [2,2,2]-extension of Ky. In
fact, the four roots of z* + agz? + ¢y are

+ % (v ao + 2v/co £ \/ap — 2y/co)
— i (Vi + 5y (Vi D)

£ (Vi - (V- DV ),
and hence K3 = K (y/ao £2,/cy). Thus we obtain

the statement for Ny = (. O
2.3. Number theoretic part. We shall
consider the ramification and the class number
parity. We denote by Op the ring of integers in a
number field F', and by OF its unit group.
Lemma 2.8. Ifby € O, then;
- ki/k is unramified outside primes dividing
2(b3 — 1).
- ko/ky is unramified outside primes dividing 2by.
- kn/ko is unramified outside 2 for any n > 3.
Proof. Recall that

b2 + 2b,_1ib, — 1 =0

for all n > 1. Then b, € O,fn if b,_1 € Oy, _,. There-
fore b, € (9,:” for all n > 1 if by € O,. Since

kn+1 = kn( V b% - ]-) = kn( V bnflbn)a

we obtain the statements. U
Lemma 2.9. Assume that by € O. Then the
following two statements hold true:
- If Ny # 0, then k, /k is unramified outside 2 for
any n > 0.
- If No =0, then K,/K, is unramified outside 2
for anyn > 1, and K1/Ky is unramified outside
primes dividing 2(b3 — 1).

[Vol. 96(A),

Proof. Since K,/K; is a [2,4]-extension by
Lemma 2.7, K /K; is a cyclic extension of degree
4, which is unramified outside 2by by Lemma 2.8.
Since K /K> is unramified outside 2 by Lemma 2.8,
any prime v not dividing 2 does not ramify in
KJ /K. Hence K,/K; is unramified outside 2. By
Lemma 2.8, K, /K, is unramified outside 2 for any
n>1.If Ny =0, then k& N Ky = k and K| = k1 Kj.
Hence we obtain the statement for Ny = (). Suppose
that Ny # 0. Then ki = k(\/b5 — 1) = k(vby) by
Lemma 2.6, and hence k;/k is unramified outside
2(b3 —1) and unramified outside 2b,. Since
Op(b — 1) 4+ Oby = O, ki1/k is unramified outside
2. Thus we obtain the statement for Ny # 0. O

We need the following result, which is a part of
[17, Theorem 2.1] or [13, Proposition 1].

Proposition 2.10. Let S be a finite set of
primes of a subfield of a number field K, and let T
be a subset of S. Let K"/K be a cyclic quartic
extension, which is unramified outside S and totally
ramified at any primes lying over S. Let K'/K be
the unique quadratic subextension of K'"/K. If
24 |CI"(K")|, then 24 |CI"(K")|.

Suppose that by € O. By Lemmas 2.7 and 2.9,
K,i3/K, is a [2,4]-extension unramified outside 2
for any n > §, where § =0 if Ny #0, and § =1 if
Ny = 0.

Lemma 2.11. Suppose that n > 6. Assume
that K, 1o/ K,, is totally ramified at any primes lying
over 2 and 21 |ClI" (K,i2)|. Then K,i3/Kn.1 is
totally ramified at any primes lying over 2 and
24| O (Koo

Proof. Since K,o/K} is ramified at any
primes v|2, the cyclic quartic extension K, 3/K;
is totally ramified at any v|2. Hence K, 3/K,+1 is
totally ramified at any primes lying over 2. Since
21 |CI"(K,12)|, we have 21t |CI" (K, 3)| by Propo-
sition 2.10 for the cyclic quartic extension
K3/ K; . O

Suppose that n >§. By using Lemma 2.11
recursively, we see that 21 |CI'(K,,)| for any m >
n if K19/ K, is totally ramified at any primes lying
over 2 and 21 |CI" (K,2)|- By combining Lemmas
2.6, 2.7, 2.9 and this fact, the proof of Theorem 1.1
is completed.

3. Examples. The following result by
Iwasawa ([8]) is also useful to find examples.

Proposition 3.1. Let K'/K be a quadratic
extension ramified at only one primev. PutT = () or
T = {v}. If 2+ |CI"(K)|, then 21 |CI" (K")|.
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Suppose that ¢ is defined as (1).

Example 3.2. Put by ==4i, and put k=
Q(i). Since by(b —1)=£(1+ )%, we have
V/bo(b5 — 1) € k. Then
ka = QUi,b2) = Q(i, Voo, Voo +1) = Q(Gs, VI +1)

is a [2, 2]-extension of k = Q(¢) which is unramified
outside 2 and totally ramified at 14 7. Hence the
condition C(by) is satisfied (see Remark 1.2). By
Lemma 2.7, kny3/ky is a [2,4]-extension unramified
outside 1+ for any n > 0. By applying Proposi-
tion 3.1 for k,/k,—1 recursively, we see that k. /k
is totally ramified at 1+ 4, and that 21 |Cl(k,)| for
any n > 0.
Remark 3.3.

1 1 _ 1
—ig(iz) = = (ﬂc + > =—(1+14) 2<x + )
2 T z
is a PGLy-conjugate of ¢. Put &(z) = i¢(ix). Then
&(x) is the z-coordinate of the endomorphism [1 + ]
of the elliptic curve E : 3> = 2® + = with complex

multiplication by Z[i] and the j-invariant 1728
(see [16,p. 111, Proposition 2.3.1]). Since

P"(x) = (-1)"(=2)"(2) = (-1)"(~i¢i)" (z)
= (=1)""ig" (i),
we have (—1)""ig¢ (b)) = & "(iby), and hence
k(¢ (by)) = k(P (iby)). Since d3(00) = {1, 4}
and @(£1) = £i, we have & " 3(00) =& (1)U
@ " (£1). If by = Fi as in Example 3.2, then

K67 (b)) = K@ (+1)) = K@ (o0))

Note that

contains the ray class field Q(i)(&2[¢ € " 3(c0))
of Q(i) modulo (1+14)""* (see [16,p. 135, Theorem
5.6]).

Example 3.4. Put by = +4i, and put k=
Q(7,/q) with an odd prime number ¢g. By Propo-
sition 3.1,q:clhe class number of Q(1/¢%) is odd, where
¢ =(-1)27¢g=1 (mod 4). By Example 3.2, the
conditions /by(bj — 1) € k and C(by) are satisfied
(see Remark 1.2), and ky3/k, is a [2,4]-extension
unramified outside 2 and totally ramified at any
primes lying over 2 for any n > 0.

If ¢ =5 (mod 8), then 2 does not split in
k/Q. By Proposition 3.1 for k/Q(/q*), the class
number of k is odd. By applying Proposition 3.1 for
kn/kn—1 recursively, we see that 21 |Cl(k,)| for any
n > 0.

Put T = {2}. By using PARI/GP ([14]), one
can see that 21 |CI" (k)| if ¢ = 7 (mod 16) and ¢ <
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~

? TClassGroup(bnf)={local(P,g);
print1(bnf.clgp[2]) ;P=idealprimedec(bnf,2);
for(g=1,matsize(P) [2],
printl([bnfisprincipal (bnf,P[g]) [1],
P[gl[3], /* ramification index */

P[gl[4] /* residue degree */ 1))}

? kO=bnfinit (y~4+900,1);

? i=Mod (y~2/(-30),y~4+900) ; b0=3%i;

? if (bnfcertify(k0)==1,TClassGroup(k0));
(2100417, 2, 1100117, 2, 1]

? phi=(i/2)*(x-1/x);
f2=numerator (subst (phi,x,phi)-b0) ;
k2=rnfinit(k0,1ift (£f2/polcoeff (£2,4)));
k2=bnfinit (k2.polabs,1);

if (bnfcertify(k2)==1,TClassGroup(k2));
[410031~, 8, 1]1[[3]1~, 8, 1]

NN N N

Fig. 1. PARI/GP for Example 3.5.

100 (i.e., g€ {7,23,71}). Then k has two primes
lying over 2. By Lemma 2.11, 21 |CI* (k,)| for any
n > 0.

Example 3.5. Put by = 3i and k=
Q(i, /b2 — 1)) = Q(v—30i) = Q(i,/15). Then

we obtain the following results by using PARI/GP
([14]): The condition C(by) is satisfied (see Remark
1.2), and the prime 1+ ¢ of Q(¢) splits in k/Q(z).
Moreover, ks /k is totally ramified at the two primes
of k, and 2 1 |CI" (ky)| for T = {2} (see Figure 1). By
Lemma 2.11, 24 | CI" (k,)| for any n > 0.

On the other hand, suppose that by = 2 — ¢ and
k= Q(i, /bo (b5 — 1)) = Q(i, V/5). As seen in Exam-
ple 3.4, the class number of & is odd, and 2 does not
split in k/Q. Then 21 |Cl(k,)| for all n >0, by
Lemma 2.9 and the recursive use of Proposition
3.1.

Example 3.6. Put k=Q(). For b€
{3i,2 — 4,1+ 44,6 — 1,3+ 2i}, we obtain the follow-
ing results by using PARI/GP ([14]): The condition
C(bp) is satisfied and /by(b3 — 1) & k.

If by = 34, K/Q is totally ramified at 2, and the
unique prime of Kj lying over 2 splits in K;/Kj.
Moreover, assuming GRH, K3/K; is totally rami-
fied at any primes lying over 2, and 21 |CI" (K3)]
for T = {2}. By Theorem 1.1, 2 |CI" (K,,)| for any
n > 1 under GRH.

If by € {2 —4,1+4i,6 —i}, 2 does not split in
K,/Q and |CI(K})| = 1. If by = 3 + 24, then 2 does
not split in K»/Q, |Cl(K,)| =2 and |CI(K,)| = 1.
By Lemma 2.9 and the recursive use of Proposi-
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tion 3.1, we see that the class number of K, is odd
for any n > 2.

Remark 3.7. We have not yet found any
example of by and k such that 21 |CI(K,)| and K,
has at least two ramified primes lying over 2 for all
sufficiently large n > 4.
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