Iterated towers of number fields by a quadratic map defined over the Gaussian rationals

By Yasushi Mizusawa*) and Kota Yamamoto**)

(Communicated by Shigefumi MORI, M.J.A., Sept. 14, 2020)

Abstract: An iterated tower of number fields is constructed by adding preimages of a base point by iterations of a rational map. A certain basic quadratic rational map defined over the Gaussian number field yields such a tower of which any two steps are relative bicyclic biquadratic extensions. Regarding such towers as analogues of \mathbb{Z}_2 -extensions, we examine the parity of 2-ideal class numbers along the towers with some examples.

Key words: Iterated extension; class number parity; Iwasawa theory.

1. Introduction. Let ϕ be a rational map of prime degree p which is defined as the rational function $\phi(x) \in k(x)$ over a number field k. Let $\{b_n\}_{0 \le n \in \mathbb{Z}}$ be a sequence of algebraic numbers such that $\phi(b_{n+1}) = b_n$ for all $n \ge 0$. For a finite extension $K/k(b_0)$, we obtain a sequence

$$K \subset K_1 \subset K_2 \subset \cdots \subset K_n \subset \cdots \subset K_\infty = \bigcup_{n \geq 1} K_n,$$

where $K_n = K(b_n)$ for each $n \ge 1$. The number field K_n is contained in a Galois extension $K(\phi^{-n}(b_0))$ of K. If ϕ is 'post-critically finite', i.e., the orbits $\{\phi^n(c)\}_{0\le n\in \mathbb{Z}}$ of any critical points c of ϕ are finite, then the number of primes of K ramifying in $K(\phi^{-\infty}(b_0))/K$ is finite ([1,5]), and such iterated extensions have been constructed and studied in various situations (see e.g. [2,3]).

If K_n/K is a cyclic Galois extension of degree p^n for all $n \geq 1$, then K_∞ is a \mathbf{Z}_p -extension of K, i.e., $\operatorname{Gal}(K_\infty/K)$ is isomorphic to the additive group \mathbf{Z}_p of p-adic integers. For example, K_∞/K is the cyclotomic \mathbf{Z}_2 -extension if $\phi(x) = x^2 - 2$ and $b_0 = 0$. The growth of the p-parts of the class numbers along a \mathbf{Z}_p -extension K_∞/K is described by Iwasawa's class number formula ([9]), and such a formula has been extended to some non-Galois towers ([4,11] etc.) and p-adic Lie extensions ([6,12,15] etc.). One of the most important con-

jectures in Iwasawa theory is Greenberg's conjecture ([7]) which states that the p-parts of the class numbers are bounded along the cyclotomic \mathbf{Z}_p -extension of a totally real number field. Analogous problems can be also considered for iterated extensions K_{∞}/K by post-critically finite ϕ , as in [17] where the case of $\phi(x) = x^2 - 2$ has been considered. In particular, it is a basic problem to find many iterated extensions K_{∞}/K such that the T-ideal class number of K_n is not divisible by p for all sufficiently large n and for a finite set T of primes of K ramifying in K_{∞}/K . For a finite set T of primes of a subfield of a number field F, the T-ideal class number $|Cl^T(F)|$ of F is the order of the T-ideal class group $Cl^T(F) = Cl(F)/\langle [w]; w | \prod_{v \in T} v \rangle$, which is the quotient of the ideal class group Cl(F) by the subgroup generated by all classes of prime ideals w lying over T.

In this paper, we consider iterated extensions K_{∞}/K by a rational function

(1)
$$\phi(x) = \frac{(ix) + (ix)^{-1}}{2} = \frac{i}{2} \left(x - \frac{1}{x} \right)$$

of degree p=2, which is defined over the Gaussian number field $\mathbf{Q}(i)$, where $i=\sqrt{-1}$. The map ϕ is post-critically finite, and comes from an endomorphism of the elliptic curve $E: y^2 = x^3 + x$ with complex multiplication by Gaussian integers $\mathbf{Z}[i]$ (see Remark 3.3). Then, regarding K_{∞}/K as an analogue of a \mathbf{Z}_2 -extension, we examine the parity of $|Cl^T(K_n)|$ along the tower of iterated extensions $\{K_n\}_{1\leq n\in \mathbf{Z}}$. The main result is the following theorem, which can be seen as a partial refinement of [5, §5] in a special case. Put a condition C(b):

²⁰²⁰ Mathematics Subject Classification. Primary 11R11; Secondary 11R29, 11R23.

^{*)} Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

^{**)} Division of Mathematics and Mathematical Science, Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya 466-8555, Japan.

$$\{\sqrt{b^2-1},\sqrt{b(b\pm1)},\sqrt{b\pm1},\sqrt{b}\}\cap k(b)=\emptyset$$

for each algebraic number b. We denote an abelian 2-group by its type.

Theorem 1.1. Suppose that $i \in k$ and $\phi(x) = \frac{i}{2}(x - \frac{1}{x})$. Let $b_0 \in k$ be an algebraic integer satisfying $C(b_0)$. Put $k_n = k(b_n)$ for $n \ge 0$. Put $K = k(\sqrt{b_0})$, and put $K_n = k_n(\sqrt{b_0})$ for $n \ge 1$. Let T be a set of primes of k lying over 2. Then the following statements hold true for each n > 1.

- (a) k_{n+1}/k_{n-1} is a [2, 2]-extension.
- (b) K_{n+3}/K_n is a [2, 4]-extension unramifid outside 2.
- (c) If K_{n+2}/K_n is totally ramified at any prime lying over 2 and $2 \nmid |Cl^T(K_{n+2})|$, then $2 \nmid |Cl^T(K_m)|$ for all $m \ge n$.

In the proof of Theorem 1.1, the notation K_0 denotes either k or K according to whether $\sqrt{b_0(b_0^2-1)} \in k$ or not. Then we will see that the statements (b) and (c) also hold true for n=0 if $\sqrt{b_0(b_0^2-1)} \in k$.

Remark 1.2. For $b_0 \in k$, the conditions $C(b_0)$ and $\sqrt{b_0(b_0^2-1)} \notin k$ are satisfied if and only if $k(\sqrt{b_0}, \sqrt{b_0+1}, \sqrt{b_0-1})/k$ is a [2,2,2]-extension. If $\sqrt{b_0(b_0^2-1)} \in k$, then the condition $C(b_0)$ is satisfied if and only if $k(\sqrt{b_0}, \sqrt{b_0+1})/k$ is a [2,2]-extension. The point $(b_0, \sqrt{b_0(b_0^2-1)})$ is a $k(\sqrt{b_0(b_0^2-1)})$ -rational point of the elliptic curve $E': y^2 = x^3 - x$.

2. Proof of Theorem 1.1.

2.1. Preliminaries. Suppose that ϕ is defined as (1), and k is a finite extension of $\mathbf{Q}(i)$. For $b \in \overline{\mathbf{Q}}$, we have $\phi(b') = b$ if and only if $b'^2 + 2bib' - 1 = 0$, i.e.,

$$b' = -i(b \pm \sqrt{b^2 - 1}) = \left(\frac{\sqrt{b - 1} \pm \sqrt{b + 1}}{1 + i}\right)^2.$$

Then $k(b') = k(b, \sqrt{b^2 - 1})$. Note that $2i = (1 + i)^2$.

Lemma 2.1. Assume that $i \in k$ and that the condition C(b) is satisfied for $b \in \overline{\mathbb{Q}}$. Let b' and b'' be algebraic numbers such that $\phi(b') = b$ and $\phi(b'') = b'$. Then k(b'')/k(b) is a [2,2]-extension containing three quadratic subextensions $k(b, \sqrt{b(b\pm 1)}), k(b')$. Moreover, the condition C(b') is also satisfied.

Proof. Let

$$f(x) = x^4 + 4bx^3 + 2x^2 - 4bx + 1 \in k(b)[x]$$

be the numerator of $\phi^2(x) - b = \frac{f(x)}{-4x^3+4x}$. Note that $\phi(-\frac{1}{x}) = \phi(x)$. Since $\phi(b'') = b'$ and $\phi(b') = b$, we can easily see that the four roots of f(x) are

(2)
$$b'', -\frac{1}{b''}, \frac{b''+1}{b''-1}, -\frac{b''-1}{b''+1},$$

and hence k(b'')/k(b) is a Galois extension and $[k(b''):k(b)] \leq 4$. Moreover, one can directly show that

$$\left(b'' + \frac{b'' + 1}{b'' - 1} + 2b\right)^2 = 4b(b - 1),$$

which implies that $\sqrt{b(b-1)} \in k(b'')$. Since the condition C(b) is satisfied,

$$k(b'') = k(b)(\sqrt{b(b-1)}, \sqrt{b(b+1)})$$

and $\operatorname{Gal}(k(b'')/k(b)) \simeq [2,2].$ Thus we obtain the former statement.

Since [k(b''):k(b')]=2, we have $\sqrt{b'^2-1}\notin$ Recall that $b'^2 + 2bib' - 1 = 0$. Since $N_{k(b')/k(b)}(b'(b'\pm 1)) = -N_{k(b')/k(b)}(b'\pm 1) = \pm (1+i)^2 b,$ and since $\sqrt{b} \notin k(b)$ by the assumption, we have $\sqrt{b'(b'\pm 1)} \notin k(b')$ and $\sqrt{b'\pm 1} \notin k(b')$. Note that $k(b'') = k(b')(\sqrt{b'^2 - 1}) = k(b')(\sqrt{bb'}).$ If $\sqrt{b'} \in k(b'),$ then $k(b'') = k(b')(\sqrt{b})$, in particular $k(\sqrt{b})/k(b)$ is a quadratic subextension of the [2, 2]-extension k(b'')/k(b). This implies that $k(\sqrt{b}) =$ $k(b, \sqrt{b(b-1)})$ or $k(\sqrt{b}) = k(b, \sqrt{b(b+1)})$, i.e., $\sqrt{b-1} \in k(b)$ or $\sqrt{b+1} \in k(b)$. This is a contradiction. Therefore $\sqrt{b'} \notin k(b')$. Thus the latter statement is also obtained.

Remark 2.2. Since ϕ^2 is defined over \mathbf{Q} , f(x) is defined over $\mathbf{Q}(b)$. Put $g(x) = \pm \sqrt{x}$. Then $g^{-1}(x) = x^2$, and a conjugate

$$(g^{-1}\phi g)(x) = -\frac{1}{4}\left(x-2+\frac{1}{x}\right)$$

is also defined over **Q**.

2.2. Field theoretic part. Unless otherwise noted, we may suppose that $b_0 \in k$ is not necessarily an algebraic integer.

Lemma 2.3. If $C(b_0)$ is satisfied, then for all $n \ge 0$, $C(b_n)$ is satisfied, and k_{n+2}/k_n is a [2,2]-extension containing three quadratic subextensions $k_n(\sqrt{b_n(b_n \pm 1)})$, $k_{n+1} = k_n(\sqrt{b_n^2 - 1})$.

Proof. We obtain the statement by using Lemma 2.1 inductively. $\hfill\Box$

Throughout the following, we assume that $C(b_0)$ is satisfied. Recall that $K_n = k_n(\sqrt{b_0})$ for each $n \geq 1$, and put

$$N_0 = \{1 \le n \in \mathbf{Z} \mid \sqrt{b_0} \in k_n\}$$

= $\{1 \le n \in \mathbf{Z} \mid K_n = k_n\}.$

Note that $n \in N_0$ if $n \ge \min N_0$.

Lemma 2.4. If $n \ge 1$, then $K_{n+1} = K_n(\sqrt{b_n})$. In particular, $K_n = k_n$ and $k_{n+1} = k_n(\sqrt{b_n})$ for all $n \in N_0$.

Proof. Recall that $k_{n+1} = k_n(\sqrt{b_{n-1}b_n})$ for all $n \geq 1$. Then $K_{n+1} = K_n(\sqrt{b_{n-1}b_n})$. If $\sqrt{b_{n-1}} \in K_n$ for $n \geq 1$, then $K_{n+1} = K_n(\sqrt{b_n})$ and $\sqrt{b_n} \in K_{n+1}$. Since $\sqrt{b_0} \in K_1$, we obtain the claim by induction. \square

Lemma 2.5. K_{n+3}/k_n is a Galois extension for each $n \ge 0$.

Proof. Recall that $-\frac{1}{b_{n+1}}$ is the conjugate of b_{n+1} over k_n . Then there exists $\tau \in \operatorname{Gal}(\overline{\mathbb{Q}}/k_n)$ such that $b_{n+1}^{\tau} = -\frac{1}{b_{n+1}}$. Since k_{n+3}/k_{n+1} is a Galois extension, the conjugate of k_{n+3} over k_n different from k_{n+3} itself is $k_{n+3}^{\tau} = k(b_{n+3}^{\tau})$. Therefore $k_{n+3}^{\tau}k_{n+3} = k_{n+3}(b_{n+2}^{\tau})$ is a Galois extension of k_n . Since $\phi^2(b_{n+2}^{\tau}) = b_n$, we have $b_{n+2}^{\tau} \in \{b_{n+2}, -\frac{1}{b_{n+2}}, \frac{b_{n+2}+1}{b_{n+2}-1}, -\frac{b_{n+2}-1}{b_{n+2}+1}\}$ (see (2)). If b_{n+2}^{τ} is either b_{n+2} or $-\frac{1}{b_{n+2}}$, then $b_{n+1}^{\tau} = \phi(b_{n+2}^{\tau}) = b_{n+1}$, which implies a contradiction that $k_{n+1} \subset k_n$. Therefore $b_{n+2}^{\tau} = \frac{b_{n+2}+1}{(b_{n+2}-1)}$ or $b_{n+2}^{\tau} = -\frac{b_{n+2}+1}{b_{n+2}-1}$. Then $(b_{n+2}^{\tau})^2 - 1 = \frac{\pm 4b_{n+2}}{(b_{n+2}+1)^2}$. Since $b_{n+3}^{\tau} = -i(b_{n+2}^{\tau} \pm \sqrt{(b_{n+2}^{\tau})^2} - 1)$, $k_{n+3}^{\tau}k_{n+3} = k_{n+3}(\sqrt{b_{n+2}}) \subset K_{n+3}$ by Lemma 2.4. Since $[K_{n+3}:k_{n+3}] \le 2$, we have $K_{n+3} = k_{n+3}^{\tau}k_{n+3}$ if $\sqrt{b_{n+2}} \notin k_{n+3}$. Suppose that $\sqrt{b_{n+2}} \in k_{n+3}$. Since $k_j(\sqrt{b_{j-1}b_j}) = k_{j+1} \subset k_{n+3}$ if or any $n+2 \ge j \ge 1$, we have $\sqrt{b_{j-1}} \in k_{n+3}$ if $\sqrt{b_j} \in k_{n+3}$, and hence $\sqrt{b_0} \in k_{n+3}$ by induction. Then $K_{n+3} = k_{n+3} = k_{n+3}^{\tau}k_{n+3} = k_{n+3}^{\tau}k_{n+3}$. Therefore K_{n+3}/k_n is a Galois extension.

By Lemma 2.3, $k_{n+1}(\sqrt{b_{n+1}(b_{n+1}+1)})$ is a subextension of k_{n+3}/k_n of degree 4. Since

$$b_{n+1} = \frac{(\sqrt{b_{n+1}(b_{n+1}+1)})^2 - 1}{1 - 2b_n i},$$

one can easily see that the minimal polynomial of $\sqrt{b_{n+1}(b_{n+1}+1)}$ over k_n is

(3)
$$x^4 + a_n x^2 + c_n$$

= $x^4 + (4b_n^2 + 2b_n i - 2)x^2 + b_n (1+i)^2$.

Then

(4)
$$c_n(a_n^2 - 4c_n) = 4b_n(b_n^2 - 1)(1+i)^2(2b_n + i)^2$$

$$\equiv b_n(b_n^2 - 1) \mod (k_n^{\times})^2.$$

Lemma 2.6. The following three statements are equivalent:

- (a) $N_0 \neq \emptyset$.
- (b) $1 \in N_0$, i.e., N_0 is the set of all positive rational integers.
- (c) $\sqrt{b_0(b_0^2-1)} \in k$.

Proof. (a) \Rightarrow (b): Put $n_0 = \min N_0$. Suppose that $n_0 \geq 3$. Then $K_{n_0} = k_{n_0}$ which is a Galois extension of k_{n_0-3} by Lemma 2.5. Since $\sqrt{b_0} \notin k_{n_0-1}$ and $\sqrt{b_0} \in k_{n_0}$, we have $k_{n_0-1} \cap K_{n_0-3} = k_{n_0-3}$ and $k_{n_0} = K_{n_0-1}$. Since k_{n_0-1}/k_{n_0-3} is a [2,2]-extension, k_{n_0}/k_{n_0-3} is a [2,2,2]-extension. In particular, $k_{n_0-2}(\sqrt{b_{n_0-2}(b_{n_0-2}+1)})/k_{n_0-3}$ is a [2,2]-extension. By (3), we have $\sqrt{c_{n_0-3}} \in k_{n_0-3}$ (see e.g. [10, Corollary 2.2.4]), i.e., $\sqrt{b_{n_0-3}} \in k_{n_0-3}$. This contradicts the validity of $C(b_{n_0-3})$ by Lemma 2.3. Therefore $n_0 \leq 2$ if $N_0 \neq \emptyset$. Suppose that $n_0 = 2$. Then $\sqrt{b_0} \in k_2$, and hence $k(\sqrt{b_0})/k$ is a quadratic subextension of the [2,2]-extension k_2/k . Since $\sqrt{b_0} \notin k_1$, i.e., $k(\sqrt{b_0}) \neq k_1$, we have either $k(\sqrt{b_0}) = k(\sqrt{b_0(b_0+1)})$ or $k(\sqrt{b_0(b_0-1)})$. Then $\sqrt{b_0+1} \in k$ or $\sqrt{b_0-1} \in k$. This contradicts to the condition $C(b_0)$. Thus we have $n_0 = 1 \in N_0$.

(b) \Leftrightarrow (c): We have $\sqrt{b_0} \in k_1$ if and only if $k(\sqrt{b_0}) = k(\sqrt{b_0^2 - 1})$, i.e., $\sqrt{b_0(b_0^2 - 1)} \in k$. \square By Lemma 2.6, we have $K_1 = k_1 = k_0(\sqrt{b_0}) \neq k_0$ if $N_0 \neq \emptyset$. Put

$$K_0 = \begin{cases} k_0 & \text{if } N_0 \neq \emptyset, \\ k_0(\sqrt{b_0}) & \text{if } N_0 = \emptyset. \end{cases}$$

Then $k_m \cap K_n = k_n$ and $K_m = k_m K_n$ for any $m \ge n \ge 0$. By Lemma 2.3, we obtain a diagram

$$K_n$$
 K_{n+1}
 K_{n+1}
 K_{n+2}
 K_{n+3}
 K_{n+3}

for all $n \geq 0$, where $K_n^{\pm} = K_n(\sqrt{b_n(b_n \pm 1)})$.

Lemma 2.7. The following two statements hold true:

- · If $N_0 \neq \emptyset$, then k_{n+3}/k_n is a [2,4]-extension for each $n \geq 0$.
- · If $N_0 = \emptyset$, then K_{n+3}/K_n is a [2, 4]-extension for each $n \ge 1$, and

$$K_3 = K_0 \left(\sqrt{b_0(b_0 - 1)}, \sqrt{(\sqrt{b_0} + 1)(\sqrt{b_0} - i)}, \sqrt{(\sqrt{b_0} - 1)(\sqrt{b_0} + i)} \right).$$

Proof. By Lemmas 2.4 and 2.5, K_{n+3}/K_n is a Galois extension of degree 8 for each $n \ge 0$. Since $[K_{n+1}^+:K_n]=4$, the polynomial (3) is irreducible over K_n . If $n \ge 1$, $K_n(\sqrt{b_n^2-1})=K_{n+1}=K_n(\sqrt{b_n})$ by Lemma 2.4, which implies that $\sqrt{b_n} \notin K_n$ and

 $\sqrt{b_n(b_n^2-1)} \in K_n$. By Lemma 2.6, $\sqrt{b_0} \notin k = K_0$ and $\sqrt{b_0(b_0^2-1)} \in k_0 = K_0$ if $N_0 \neq \emptyset$. Hence $\sqrt{c_n} =$ $(1+i)\sqrt{b_n} \notin K_n$ and $\sqrt{c_n(a_n^2-4c_n)} \in K_n$ for all $n \geq \delta$ (see (4)), where $\delta = 0$ if $N_0 \neq \emptyset$, and $\delta = 1$ if $N_0 = \emptyset$. Therefore K_{n+1}^+/K_n is a cyclic extension of degree 4 (see e.g. [10, Corollary 2.2.4]) if $n \geq \delta$. This implies that K_{n+3}/K_n is a [2,4]-extension for all $n \geq \delta$. In particular, we obtain the statement for $N_0 \neq \emptyset$. Suppose that $N_0 = \emptyset$. Then $x^4 + a_0 x^2 + c_0$ is also the the minimal polynomial of $\sqrt{b_1(b_1+1)}$ over K_0 . Recall that $b_1(b_1+1)=1-b_1(2b_0i-1)$. Since $\sqrt{c_0} = (1+i)\sqrt{b_0} \in K_0, K_1^+ = K_0(\sqrt{b_1(b_1+1)})$ is a [2, 2]-extension of K_0 (see e.g. [10, Corollary 2.2.4]). Then the octic Galois extension K_3/K_0 contains two distinct [2,2]-extension K_1^+/K_0 and K_2/K_0 , and hence $K_3 = K_0^- K_1^+$ is a [2,2,2]-extension of K_0 . In fact, the four roots of $x^4 + a_0x^2 + c_0$ are

$$\pm \frac{i}{2} \left(\sqrt{a_0 + 2\sqrt{c_0}} \pm \sqrt{a_0 - 2\sqrt{c_0}} \right)$$

$$= \pm i \left(\left(\sqrt{b_0} + \frac{i-1}{2} \right) \sqrt{(\sqrt{b_0} + 1)(\sqrt{b_0} - i)} \right)$$

$$\pm \left(\sqrt{b_0} - \frac{i-1}{2} \right) \sqrt{(\sqrt{b_0} - 1)(\sqrt{b_0} + i)} \right),$$

and hence $K_3 = K_0^-(\sqrt{a_0 \pm 2\sqrt{c_0}})$. Thus we obtain the statement for $N_0 = \emptyset$.

2.3. Number theoretic part. We shall consider the ramification and the class number parity. We denote by \mathcal{O}_F the ring of integers in a number field F, and by \mathcal{O}_F^{\times} its unit group.

Lemma 2.8. If $b_0 \in \mathcal{O}_k$, then;

- · k_1/k is unramified outside primes dividing $2(b_0^2-1)$.
- · k_2/k_1 is unramified outside primes dividing $2b_0$.
- · k_n/k_2 is unramified outside 2 for any $n \ge 3$. Proof. Recall that

$$b_n^2 + 2b_{n-1}ib_n - 1 = 0$$

for all $n \geq 1$. Then $b_n \in \mathcal{O}_{k_n}^{\times}$ if $b_{n-1} \in \mathcal{O}_{k_{n-1}}$. Therefore $b_n \in \mathcal{O}_{k_n}^{\times}$ for all $n \geq 1$ if $b_0 \in \mathcal{O}_k$. Since

$$k_{n+1} = k_n(\sqrt{b_n^2 - 1}) = k_n(\sqrt{b_{n-1}b_n}),$$

we obtain the statements.

Lemma 2.9. Assume that $b_0 \in \mathcal{O}_k$. Then the following two statements hold true:

- · If $N_0 \neq \emptyset$, then k_n/k is unramified outside 2 for any $n \geq 0$.
- · If $N_0 = \emptyset$, then K_n/K_1 is unramified outside 2 for any $n \ge 1$, and K_1/K_0 is unramified outside primes dividing $2(b_0^2 1)$.

Proof. Since K_4/K_1 is a [2,4]-extension by Lemma 2.7, K_2^+/K_1 is a cyclic extension of degree 4, which is unramified outside $2b_0$ by Lemma 2.8. Since K_2^+/K_2 is unramified outside 2 by Lemma 2.8, any prime v not dividing 2 does not ramify in K_2^+/K_1 . Hence K_2/K_1 is unramified outside 2. By Lemma 2.8, K_n/K_1 is unramified outside 2 for any $n \geq 1$. If $N_0 = \emptyset$, then $k_1 \cap K_0 = k$ and $K_1 = k_1K_0$. Hence we obtain the statement for $N_0 = \emptyset$. Suppose that $N_0 \neq \emptyset$. Then $k_1 = k(\sqrt{b_0^2 - 1}) = k(\sqrt{b_0})$ by Lemma 2.6, and hence k_1/k is unramified outside $2(b_0^2 - 1)$ and unramified outside $2b_0$. Since $\mathcal{O}_k(b_0^2 - 1) + \mathcal{O}_kb_0 = \mathcal{O}_k$, k_1/k is unramified outside 2. Thus we obtain the statement for $N_0 \neq \emptyset$.

We need the following result, which is a part of [17, Theorem 2.1] or [13, Proposition 1].

Proposition 2.10. Let S be a finite set of primes of a subfield of a number field K, and let T be a subset of S. Let K''/K be a cyclic quartic extension, which is unramified outside S and totally ramified at any primes lying over S. Let K'/K be the unique quadratic subextension of K''/K. If $2 \nmid |Cl^T(K')|$, then $2 \nmid |Cl^T(K'')|$.

Suppose that $b_0 \in \mathcal{O}_k$. By Lemmas 2.7 and 2.9, K_{n+3}/K_n is a [2,4]-extension unramified outside 2 for any $n \geq \delta$, where $\delta = 0$ if $N_0 \neq \emptyset$, and $\delta = 1$ if $N_0 = \emptyset$.

Lemma 2.11. Suppose that $n \geq \delta$. Assume that K_{n+2}/K_n is totally ramified at any primes lying over 2 and $2 \nmid |Cl^T(K_{n+2})|$. Then K_{n+3}/K_{n+1} is totally ramified at any primes lying over 2 and $2 \nmid |Cl^T(K_{n+3})|$.

Proof. Since K_{n+2}/K_n^+ is ramified at any primes v|2, the cyclic quartic extension K_{n+3}/K_n^+ is totally ramified at any v|2. Hence K_{n+3}/K_{n+1} is totally ramified at any primes lying over 2. Since $2 \nmid |Cl^T(K_{n+2})|$, we have $2 \nmid |Cl^T(K_{n+3})|$ by Proposition 2.10 for the cyclic quartic extension K_{n+3}/K_n^+ .

Suppose that $n \geq \delta$. By using Lemma 2.11 recursively, we see that $2 \nmid |Cl^T(K_m)|$ for any $m \geq n$ if K_{n+2}/K_n is totally ramified at any primes lying over 2 and $2 \nmid |Cl^T(K_{n+2})|$. By combining Lemmas 2.6, 2.7, 2.9 and this fact, the proof of Theorem 1.1 is completed.

3. Examples. The following result by Iwasawa ([8]) is also useful to find examples.

Proposition 3.1. Let K'/K be a quadratic extension ramified at only one prime v. Put $T = \emptyset$ or $T = \{v\}$. If $2 \nmid |Cl^T(K)|$, then $2 \nmid |Cl^T(K')|$.

Suppose that ϕ is defined as (1).

Example 3.2. Put $b_0 = \pm i$, and put $k = \mathbf{Q}(i)$. Since $b_0(b_0^2 - 1) = \pm (1 + i)^2$, we have $\sqrt{b_0(b_0^2 - 1)} \in k$. Then

$$k_2 = \mathbf{Q}(i, b_2) = \mathbf{Q}(i, \sqrt{b_0}, \sqrt{b_0 + 1}) = \mathbf{Q}(\zeta_8, \sqrt{1 + i})$$

is a [2,2]-extension of $k=\mathbf{Q}(i)$ which is unramified outside 2 and totally ramified at 1+i. Hence the condition $C(b_0)$ is satisfied (see Remark 1.2). By Lemma 2.7, k_{n+3}/k_n is a [2,4]-extension unramified outside 1+i for any $n \geq 0$. By applying Proposition 3.1 for k_n/k_{n-1} recursively, we see that k_{∞}/k is totally ramified at 1+i, and that $2 \nmid |Cl(k_n)|$ for any $n \geq 0$.

Remark 3.3. Note that

$$-i\phi(ix) = \frac{i}{2}\left(x + \frac{1}{x}\right) = -(1+i)^{-2}\left(x + \frac{1}{x}\right)$$

is a PGL₂-conjugate of ϕ . Put $\Phi(x) = i\phi(ix)$. Then $\Phi(x)$ is the x-coordinate of the endomorphism [1+i] of the elliptic curve $E: y^2 = x^3 + x$ with complex multiplication by $\mathbf{Z}[i]$ and the j-invariant 1728 (see [16, p. 111, Proposition 2.3.1]). Since

$$\Phi^{n}(x) = (-1)^{n} (-\Phi)^{n}(x) = (-1)^{n} (-i\phi i)^{n}(x)$$
$$= (-1)^{n+1} i\phi^{n}(ix),$$

we have $(-1)^{n+1}i\phi^{-n}(b_0) = \Phi^{-n}(ib_0)$, and hence $k(\phi^{-n}(b_0)) = k(\Phi^{-n}(ib_0))$. Since $\Phi^{-3}(\infty) = \{\pm 1, \pm i\}$ and $\Phi(\pm 1) = \pm i$, we have $\Phi^{-n-3}(\infty) = \Phi^{-n}(\pm 1) \cup \Phi^{-n+1}(\pm 1)$. If $b_0 = \mp i$ as in Example 3.2, then

$$k(\phi^{-n}(b_0)) = k(\Phi^{-n}(\pm 1)) = k(\Phi^{-n-3}(\infty))$$

contains the ray class field $\mathbf{Q}(i)(\xi^2|\xi\in\Phi^{-n-3}(\infty))$ of $\mathbf{Q}(i)$ modulo $(1+i)^{n+3}$ (see [16, p. 135, Theorem 5.6]).

Example 3.4. Put $b_0 = \pm i$, and put $k = \mathbf{Q}(i, \sqrt{q})$ with an odd prime number q. By Proposition 3.1, the class number of $\mathbf{Q}(\sqrt{q^*})$ is odd, where $q^* = (-1)^{\frac{q-1}{2}}q \equiv 1 \pmod{4}$. By Example 3.2, the conditions $\sqrt{b_0(b_0^2 - 1)} \in k$ and $C(b_0)$ are satisfied (see Remark 1.2), and k_{n+3}/k_n is a [2,4]-extension unramified outside 2 and totally ramified at any primes lying over 2 for any n > 0.

If $q^* \equiv 5 \pmod{8}$, then 2 does not split in k/\mathbf{Q} . By Proposition 3.1 for $k/\mathbf{Q}(\sqrt{q^*})$, the class number of k is odd. By applying Proposition 3.1 for k_n/k_{n-1} recursively, we see that $2 \nmid |Cl(k_n)|$ for any $n \geq 0$.

Put $T = \{2\}$. By using PARI/GP ([14]), one can see that $2 \nmid |Cl^T(k_2)|$ if $q \equiv 7 \pmod{16}$ and q <

```
? TClassGroup(bnf)={local(P,g);
print1(bnf.clgp[2]);P=idealprimedec(bnf,2);
for(g=1,matsize(P)[2],
print1([bnfisprincipal(bnf,P[g])[1],
P[g][3], /* ramification index */
P[g][4] /* residue degree
                               */]))};
? k0=bnfinit(y^4+900,1);
? i=Mod(y^2/(-30), y^4+900);b0=3*i;
? if(bnfcertify(k0)==1,TClassGroup(k0));
[2][[1]~, 2, 1][[1]~, 2, 1]
? phi=(i/2)*(x-1/x);
 f2=numerator(subst(phi,x,phi)-b0);
? k2=rnfinit(k0,lift(f2/polcoeff(f2,4)));
? k2=bnfinit(k2.polabs,1);
? if(bnfcertify(k2)==1,TClassGroup(k2));
[4][[3]~, 8, 1][[3]~, 8, 1]
```

Fig. 1. PARI/GP for Example 3.5.

100 (i.e., $q \in \{7, 23, 71\}$). Then k has two primes lying over 2. By Lemma 2.11, $2 \nmid |Cl^T(k_n)|$ for any n > 0.

Example 3.5. Put $b_0 = 3i$ and $k = \mathbf{Q}(i, \sqrt{b_0(b_0^2 - 1)}) = \mathbf{Q}(\sqrt{-30i}) = \mathbf{Q}(i, \sqrt{15})$. Then we obtain the following results by using PARI/GP ([14]): The condition $C(b_0)$ is satisfied (see Remark 1.2), and the prime 1 + i of $\mathbf{Q}(i)$ splits in $k/\mathbf{Q}(i)$. Moreover, k_2/k is totally ramified at the two primes of k, and $2 \nmid |Cl^T(k_2)|$ for $T = \{2\}$ (see Figure 1). By Lemma 2.11, $2 \nmid |Cl^T(k_n)|$ for any $n \geq 0$.

On the other hand, suppose that $b_0 = 2 - i$ and $k = \mathbf{Q}(i, \sqrt{b_0(b_0^2 - 1)}) = \mathbf{Q}(i, \sqrt{5})$. As seen in Example 3.4, the class number of k is odd, and 2 does not split in k/\mathbf{Q} . Then $2 \nmid |Cl(k_n)|$ for all $n \ge 0$, by Lemma 2.9 and the recursive use of Proposition 3.1.

Example 3.6. Put $k = \mathbf{Q}(i)$. For $b_0 \in \{3i, 2-i, 1+4i, 6-i, 3+2i\}$, we obtain the following results by using PARI/GP ([14]): The condition $C(b_0)$ is satisfied and $\sqrt{b_0(b_0^2-1)} \notin k$.

If $b_0 = 3i$, K_0/\mathbf{Q} is totally ramified at 2, and the unique prime of K_0 lying over 2 splits in K_1/K_0 . Moreover, assuming GRH, K_3/K_1 is totally ramified at any primes lying over 2, and $2 \nmid |Cl^T(K_3)|$ for $T = \{2\}$. By Theorem 1.1, $2 \nmid |Cl^T(K_n)|$ for any $n \geq 1$ under GRH.

If $b_0 \in \{2-i, 1+4i, 6-i\}$, 2 does not split in K_1/\mathbf{Q} and $|Cl(K_1)| = 1$. If $b_0 = 3+2i$, then 2 does not split in K_2/\mathbf{Q} , $|Cl(K_1)| = 2$ and $|Cl(K_2)| = 1$. By Lemma 2.9 and the recursive use of Proposi-

tion 3.1, we see that the class number of K_n is odd for any n > 2.

Remark 3.7. We have not yet found any example of b_0 and k such that $2 \nmid |Cl(K_n)|$ and K_n has at least two ramified primes lying over 2 for all sufficiently large $n \geq \delta$.

Acknowledgements. The authors thank the referees for helpful comments for the improvement of this paper. This work was supported by JSPS KAKENHI Grant Number JP17K05167.

References

- [1] W. Aitken, F. Hajir and C. Maire, Finitely ramified iterated extensions, Int. Math. Res. Not. **2005**, no. 14, 855–880.
- [2] N. Boston and R. Jones, The image of an arboreal Galois representation, Pure Appl. Math. Q. 5 (2009), no. 1, 213–225.
- [3] M. R. Bush, W. Hindes and N. R. Looper, Galois groups of iterates of some unicritical polynomials, Acta Arith. 181 (2017), no. 1, 57–73.
- [4] L. Caputo and F. A. E. Nuccio Mortarino Majno di Capriglio, On fake Z_p-extensions of number fields, arXiv:0807.1135.
- [5] J. Cullinan and F. Hajir, Ramification in iterated towers for rational functions, Manuscripta Math. 137 (2012), no. 3–4, 273–286.
- [6] A. A. Cuoco and P. Monsky, Class numbers in \mathbf{Z}_p^d -extensions, Math. Ann. **255** (1981), no. 2, 235–258.
- [7] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98

- (1976), no. 1, 263-284.
- 8] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg **20** (1956), 257–258.
- [9] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183– 226.
- [10] C. U. Jensen, A. Ledet and N. Yui, Generic polynomials: Constructive Aspects of the Inverse Galois Problem, Mathematical Sciences Research Institute Publications, 45, Cambridge University Press, Cambridge, 2002.
- [11] T. Kataoka, An Iwasawa theory for non-Galois extension fields, RIMS Kôkyûroku **658** (1988), 34–42 (in Japanese).
- [12] A. Lei, Estimating class numbers over metabelian extensions, Acta Arith. **180** (2017), no. 4, 347–364.
- [13] Y. Mizusawa and K. Yamamoto, On 2-adic Lie iterated extensions of number fields arising from a Joukowski map. (to appaer in Tokyo J. Math.).
- [14] The PARI Group, PARI/GP version 2.7.4, Univ. Bordeaux, 2015. http://pari.math.u-bordeaux. fr/
- [15] G. Perbet, Sur les invariants d'Iwasawa dans les extensions de Lie *p*-adiques, Algebra Number Theory **5** (2011), no. 6, 819–848.
- [16] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994.
- [17] K. Yamamoto, On iterated extensions of number fields arising from quadratic polynomial maps, J. Number Theory **209** (2020), 289–311.