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Abstract:

We introduce the notion of a quasi DG category, and give a procedure to

construct a triangulated category associated to it. Then we apply it to the construction of the
triangulated category of mixed motivic sheaves over a base variety.

Key words:

Introduction. We will introduce the notion
of a quasi DG category, generalizing that of a DG
category. To a quasi DG category satisfying certain
additional conditions, we associate another quasi
DG category, the quasi DG category of C-diagrams.
We then show the homotopy category of the quasi
DG category of C-diagrams has the structure of a
triangulated category (see §1).

The main example of a quasi DG category
comes from algebraic geometry, as explained in §2.
We establish a theory of complexes of relative
correspondences; it generalizes the theory of com-
plexes of correspondences of smooth projective
varieties, as developed in [4-6]. The class of smooth
quasi-projective varieties equipped with projective
maps to a fixed quasi-projective variety S, and the
complexes of relative correspondences between
them constitute a quasi DG category, denoted by
Symb(.S).

We apply the above procedure to Symb(S) to
obtain D(S), the triangulated category of mixed
motives over S. If the base variety is the Spec of the
ground field, this coincides with the triangulated
category of motives as in [4-6].

The full details of this article will appear
elsewhere (see [7] for §2, [8] for §1).

Notation and conventions. (a) A double
complex A= (A%;d',d") is a bi-graded abelian
group with differentials d' of degree (1,0), d" of
degree (0,1), satisfying d'd”" +d’d' =0. Tts total
complex Tot(A) is the complex with Tot(A)" =
@D, 1 A and the differential d = d' + d".

Let (A,da) and (B, dp) be complexes. Then the
tensor product complex A ® B is the graded abelian
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group with (A® B)" = @;4;-,A'® B/, and with
differential d given by

diz®y) = (—1)"dz @ y+ = @ dy.

Note this differs from the usual sign convention.
Alternatively one obtains the same complex by
viewing A® B as a double complex with differ-
entials (—1)’d® 1 and 1 ® d on A’ ® B/ and taking
its total complex.

More generally for n > 2 one has the notion of
n-tuple complex. An n-tuple complex is a Z"-graded
abelian group A" with differentials dy, - -, d,,, dy
raising i, by 1, such that for k # ¢, didy + dydy, = 0.
A single complex Tot(A), called the total complex,
is defined in a similar manner. For n complexes
A3, .-+, A, the tensor product A} ® ---® A? is an
n-tuple complex.

(b) Let I be a non-empty finite totally ordered
set (we will simply say a finite ordered set), so
IT={iy, yint, i < - <ip,  Where n = |I]. Set
in(I) =4, tm(I) =4,, and I =1 — {in(I),tm(])}.
For example, for a positive integer n, I =[1,n] =
{1,---,n} is finite ordered set. In this case, if n > 2,
I=@,n):=1{2-,n—1}. If I={i,--,i,}, a
subset I" of the form [ig, 4] = {ig, -+, 0} (1 <a<
b < mn) is called a sub-interval. 5

For a subset ¥ = {j1,- -+, js—1} of I, where a >
1 and 5; < jo < -+ < J4—1, one has a decomposition
of I into the sub-intervals Iy,---,I,, where I =
[Jk—1, k], with jo =41, jo = . Thus the sub-inter-
vals satisfy I N ;.1 = {jr} for k=1,---,a— 1. The
sequence I1,---,1, is called the segmentation of I
corresponding to 3.

81. Quasi DG categories and triangulated
categories. The notion of a quasi DG category is
a generalization of that of a DG category. Recall
that a DG category is an additive category C, such
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that for a pair of objects X, Y the group of homo-
morphisms F(X,Y) has the structure of a complex,
and the composition F(X,Y)® F(Y,Z) — F(X, Z)
is a map of complexes.

(1.1) Definition. A quasi DG category C con-
sists of data (i)—(iii), satisfying the conditions (1)-
(5). When necessary we will also impose additional
structure (iv), (v), satisfying (6)—(11).

(i) The class of objects Ob(C). There is a dis-
tinguished object O, called the zero object. For a
pair of objects X, Y, there is the “direct sum” object
X@Y,and one has (X@dY)dZ=Xo (Y Z2).

(ii) Multiple complezes F(X,- -+, X,). For each
sequence of objects Xq,--- X, (n > 2), a complex of
free abelian groups F(X7y,---,X,). More generally
for a finite ordered set I = {iy,---,i,} with n >2
and a sequence of objects X; indexed by i€ I,
there corresponds a complex F(I)= F(I;X):=
F(Xi, -, X,).

Let Ih,---,I, be the segmentation of I = [1,n]
corresponding to a subset S of (1,n). We set
F(Xi1, -, X, [S) = F(1) ®---® F(I,); this is an
a-tuple complex. More generally, for a finite ordered
set I with cardinality > 2, a sequence of objects
(Xi);er» and S C I, one has the complex F(I|S) =
F(ITS;X).

(iii) Multiple complexes F(Xi,--
maps s, 0ss and Y.

(1) We require given a quasi-isomorphic multi-
ple subcomplex of free abelian groups

ts: F(Xq, -+, Xu|S) = F(Xy,---, X, ]9).

We assume F(Xy,---,X,|0) = F(X1,---,X,). The
complex F(Xy,---,X,|S) is additive in each varia-
ble, namely the following properties are satisfied:
If a variable X; = O, then it is zero. If X7 =Y & 73,
then one has a direct sum decomposition of
complexes

F(H@ZI7X27?XTL|S)
=F(Yy, -, X,|S)® F(Z1,---,X.|9).
The same for X,,. If 1<i<n and X, =Y; ® Z;,

then there is a direct sum decomposition of com-
plexes

-, X,|S) and

F(Xy, -, Xio,Yi ® Zi, Xiga, -+, X,|S)
= (X17...7}/;,...’Xn|5)
@F(Xl7...,Zi7...7Xn|S)

& F(Xy,--,Y|58) @ F(Z;,- -+, X,|52)
@ F(Xy, -+, Z|S1) @ F(Y;, -, X,,|52)
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where 57,5, is the partition of S by ¢, namely
S1=5Nn(1,4), S2=5N(i,n). We often refer to
the last two terms as the cross terms. (Note
the complex F(Xi,---,X, [S) is additive in this
sense.) The inclusion tg is compatible with the
additivity.

For a subset T C S, if I;,---, 1. is the segmen-
tation corresponding to T, and S;=S5NI;,
one requires there is an inclusion of multiple
complexes

F(I|S) C F(I,|$) @ ---® F(I|S.)  (1.1.1)

where the latter group is viewed as a subcomplex
of FUITS)=F(LTS)® - F(.TS:) by the
tensor product of the inclusions g, : F(I;]S;) —
F(IL; TS)).

(2) For S C S’ we are given a surjective quasi-
isomorphism of multiple complexes

s F(X1,-++, X,|9) — F(X1,-, X,|9).

ForSc S C S//, osgn = O0g gn05g. The O'SSf(Xl, ceey
X,) is additive in each variable, namely if X; =
Y, ® Z;, then oge(Xy,---,X,) is the direct sum
of the maps ogg (X1, -+,Y;, -+, Xy), oss (X1, -,
Ziy -+, Xp), and the maps
05,5 @ 0s,5,: F(X1,--,Y|S1) @ F(Zy, - -+, X, |S2)
— F(X1, -, Y|8) ® F(Z;,- -, XalS),
Os.5, @ g5 F(X1,-++, Zi|S1) @ F(Y;, -+, X,,|S2)
- F(Xla ot 'aZ’£|Si) ® F(Yu s ,X7L|Sé),
on the cross terms.

The o is assumed compatible Wi;ch the inclusion
in (1.1.1): If S S and S, = S'NI; the following
comimutes:

F(I|S) — F(L|S)® - & F(I1|5)

ossl 1®0og; s

F(11S') — F(I|S) ® - ® F(11|8)).
We write o5 = 0yg : F(I) — F(I|S). The composi-
tion of g and vg is denoted by 7¢ : F(I) — F(I']S).

(3) For K = {ki,---,k;} C (1,n) disjoint from

S, a map of multiple complexes

vk F(Xq,- -, X,|9)
—>F(Xh"',XZ,"',@,"',XJS).

If K=KUTK" then ¢g=prpr :F(I|S)—
F(I — K|S). The ¢k is additive in each variable:
If X;=Y,®Z, then pg(X;,--+,X,) is the sum
of or(Xi,-, Y, X0n), ox(Xi,- Zis, X)),
and, if i ¢ K, the maps
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Yy ®id

@K1®SDK2 OnF(Xh'"aYLTSl)®F(Zia"'7X7LTSZ)7 F(X7Y)®F(YaZ)®F(Z7W)LF(X7Z)®F(ZaW)

YK, Q YK, on F(X177Z7TSI)®F(Y7’7X7LTSZ) id ® 1zl 1z

on the cross terms (S;, Sy is the partition of S by ¢, FX,Y)@ F(Y,W) e F(X,W).

and Kj, K5 is the partition of K by i), and if i € K,
the zero maps on the cross terms.

In a quasi DG category, to a pair of objects X,
Y, there still corresponds a complex F(X,Y’). But
there is no composition as in the DG case. Instead
there is given a third complex F(X,Y,Z), a quasi-
isomorphism 7: F(X,Y,Z) - F(X,Y)® F(Y, Z),
and a map of complexes p: F(X,Y,Z) — F(X, Z).
These maps give “composition” in a weak sense.
Below we will give the precise definition.

g is assumed to be compatible with the
inclusion in (1.1.1): With the same notation as
above and K; = K N I;, the following commutes:

F(I1S) = F(L]S1) ®--- @ F(I|S)
Kl 1@k,
F(I - K|S)— F(I, - K1|S) ® - - ® F(I. — K.|S.).
If K and S are disjoint and S C S, the
following commutes:
F(I|S) 2 F(I-K|S)
ossl loss
F(I|8") 25 F(I - K|9).
. (4) (acyclicity of o) For disjoint subsets R, J of
I with |J| # 0, consider the following sequence of

complexes, where the maps are alternating sums of
o, and S varies over subsets of J:

F(I|R) = EP F(I|RUS)

1S|=1
scJ
—— @ FUIRUS) — -+~ — F(I|]RU.J) — 0.
S|=2
S

Then the sequence is exact.

(5) (existence of the identity in the ring
H°F(X,X)) Before stating the condition, note
there are composition maps for H'F(X,Y) defined
as follows. For three objects X, Y and Z, let

Yy FIX,2 Y)Y F(Y,Z) — F(X,Z)

be the map in the derived category defined as the
composition gy o (O’y)71 where the maps are as in

F(X,Y)® F(Y,Z) <2~ F(X,Y,Z) 25 F(X, Z).

The map 1y is verified to be associative, namely the
following commutes in the derived category:

Let H'F(X,Y) be the 0-th cohomology of
F(X,Y). ¢y induces a map

Yy HUF(X,Y)® H'F(Y,Z) — H'F(X, Z),

which is associative. If we H'F(X,Y), wv€
HYF(Y, Z), we write u - v for ¢y (u® v).

We now require: For each X there is an element
1x € H'F(X, X) such that 1y-u=u for any u €
HF(X,Y)and u-1x = u for u € H'F(Y, X).

(iv) Diagonal elements and diagonal extension.

(6) For each object X and a constant sequence
of objects i — X; = X on a finite ordered set I with
|I] > 2, there is a distinguished element, called the
diagonal element

Ax(I) e F(I) = F(X,---, X)

of degree zero and coboundary zero. In particular
for |I| =2 we write Ax = Ax(I) € F(X,X). One
requires: .

(6-1) If S I, and I, - -, I. the corresponding
segmentation, one has

Ts(Ax(I)) = Ax() ® - @ Ax(I.)

in F(ITS)=F() Q- ® F(1,).

(6-2) For K C I, px(Ax(I)) = Ax(I - K).

(7) Let I be a finite ordered set, k € I, m > 2,
and I be the finite ordered set obtained by
replacing k by a finite ordered set with m elements
{ki,-- kny B T=[1,n], I is {1,--- k—1,k;, -,
Em,E+1,---,n}.

There is given a map of complexes, called the
diagonal extension,

diag(I,1): F(I) — F(I)

subject to the following conditions (for simplicity
assume I = [1,n]):

(7-1) It K #k, pdiag(l,1 )= diag(I —
{K}, I —{K'})pr, namely the following square
commutes:f1/

F([) M F(IN)
ol Low
diag(I—{k'},I —{K'}) ~
F(I—={k}) ——————— FI —{#}).
Ifl e {kla T km}v Pe diag(la I~) = diag(-[a I~ - {g})

If m = 2 the right side is the identity.
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(7-2) If k=mn, ¢ € {ni,---,np}, let I}, I" be
the segmentation of I by ¢. Then the following
diagram commutes:

F(I) diag(I,17) F(I~)
diag(Z, 17)] 17
F(I}) ——— F(I)® F(I").

The lower horizontal map is u+— u® A(I"”). Note
I" parametrizes a constant sequence of objects,
so one has A(I") € F(I"). Similarly in case k =1,
Cef{ly, - 1}

Ifl<k<mnand € {ky, -, kn}, let I1, I, be
the segmentation of I by k, and I/, I, of I by £.
One then has a commutative diagram:

diag(I,I") ~
F(I) — F(I)
Tl 17
F(h)® F(l,) ——— F(I}) ® F(Iy),
where the lower horizontal arrow is diag(l,I}) ®
diag(ls, I}).

Remark. From (6) and (7) it follows that
[Ax] € H'F(X, X) is the identity in the sense of (5).
Indeed the following stronger property is satisfied
for the maps ¢y :H"F(X,Y)@ H'F(Y,Z) —
H™"F(X,Z) for m,n € Z, defined in a similar
manner as in (5) above.

(5) For each we H'"F(X,Y), n€Z, one
has 1y -u=w. Similarly for ve H'F(Y,X), u-
]-X = Uu.

(v) The set of generators, notion of proper
intersection, and distinguished subcomplexes with
respect to constraints.

(8) (the generating set) For a sequence X on I,
the complex F(I) = F(I; X) is degree-wise Z-free
on a given set of generators Sp(I) = Sp(I; X). More
precisely Sp(I) = H,ezSp(I)’, where Sp(I)” gener-
ates F'(I)". This set is compatible with direct sum in
each variable: Assume for an element k € I one has
Xr =Y, ® Zg; let X' (resp. X”) be the sequence
such that X =X; for i # k, and X =Y} (resp.
X! =X, for i £k, and X} = Z;). Then Sp(I; X) =
Sp(I; X') 1 Sp(I; X7).

(9) (notion of proper intersection.) Let I be
a finite ordered set, Iy,---,I. be almost disjoint
sub-intervals of I, which means one has tm(/[;) <
in(l;41) for each i. Assume given a sequence of
objects X; on I. For any subset A of {1,---,r}, and
an element {o;},c4 € [[,c4 Sr(fi), we assume given
the notion of proper intersection satisfying the
following properties:

[Vol. 88(A),

o If {o; | i € A} is properly intersecting, for any
subset B of A, {«; |i € B} is properly inter-
secting.

e Let A and A’ be subsets of {1,---,r} such that
tm(A) <in(A"). If{a; |i € A} and {o; | i € A"}
are both properly intersecting sets, the union
{a; | i € AU A'} is also properly intersecting.

e If {ay, -, } is properly intersecting, then for
any ¢, writing da; = > ¢;,8, with 8, € Sp(I;),
each set

{ah e 7ai717/81/7ai+1a T 7Oé7>}

is properly intersecting.

e The condition of proper intersection is com-
patible with direct sum in each variable. To be
precise, under the same assumption as in (8),
for a set of elements «a; € Sp(l;;X') for
i=1,---,r, the set {o; € Sp(I;; X')},; is prop-
erly intersecting if and only if the set

{a; € Sp(1;; X)}, is properly intersecting.

Remark. For [; almost disjoint and elements
a; € F(I;), one defines {«a; € F(I;)]i € A} to be
properly intersecting if the following holds. Write
a; = Y. ey, with «;, € Sp(I;), then for any choice
of v; for i€ A, the set {w;,|i € A} is properly
intersecting. N

Further, if S; C I;, one can define the condition
of proper intersection for {a; € F(I;|S;)]i € A} by
writing each «; as a sum of tensors of elements in
the generating set.

(10) (description of F'(I]S)) (10) (description of
F(1|S)) When I,---,I, is a segmentation of I,
namely when in(ly) =in(J), tm(l;) =in(l;+1) and
tm(7,) = tm(I), the subcomplex of F(I;) ® - ® F(I,)
generated by a1 ® - -®a, with {a;} properly
intersecting is denoted by F(I,)®---&F(I,). If S C
I is the subset corresponding to the segmentation,
this subcomplex coincides with F(I]S).

(11) (distinguished subcomplexes) Let I be
a finite ordered set, Li,---,L, be almost disjoint
sub-intervals such that UL; =1I; equivalently,
in(Ly) =in(I), tm(L;) =in(L;1) or tm(L;)+1=
in(Liy1), and tm(L,) =tm(]). Assume given a
sequence of objects X; on I. Let Dist be the smallest
class of subcomplexes of F(L;)®---® F(L,) sat-
isfying the conditions below. It is then required that
each subcomplex in Dist is a quasi-isomorphic
subcomplex.

(11-1) A subcomplex obtained as follows is in
Dist. Let I,---, I, be a set of almost disjoint sub-
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intervals of [ witho union [, that is coarser than
Ly,---, L,;1let S; C I; such that the segmentations of
I; by S;, when combined for all 4, give precisely the
L;’s. Let I — I be an inclusion into a finite ordered
set I such that the image of each I, is a sub-interval.
Assume given an extension of X to I Let
Ji,---,Js C I be sub-intervals of I sgch that the
set {3, ‘]j}i,j is almost disjoint, 7; C J; be subsets,
and f; € F(Jj|T;), j=1,---,s be a properly inter-
secting set. Then one defines the subcomplex

[F(Illsl) Q- ® F(IC‘SC)]I;fv

as the one generated by aq @ - -+ ® o, a; € F(1;]5;),
such that the set

{ov, -+ 00, f; (j=1,---,s)} is properly intersect-
ing. We require it is in Dust.

The data consisting of [ — I, X on I, sub-
intervals J; C I and subsets T; C J;, and elements
fj € F(J;|T;) is called a constraint, and the corre-
sponding subcomplex the distinguished subcomplex
for the constraint.

(11-2) Tensor product of subcomplexes in Dist
is again in Dist. For this to make sense, note
complexes of the form F(L;)®---® F(I,) are
closed under tensor products: If I’ is another finite
ordered set and L},---, L, are almost disjoint sub-
intervals with union I’, then the tensor product

FL)®---@F(,)®F(L)® @ F(I)

is associated with the ordered set I IT I’ and almost
disjoint sub-intervals (Ly,---, L, L}, -+, L’).

(11-3) A finite intersection of subcomplexes in
Dist is again in Dist.

(1.2) Definition. To a quasi DG category C
one can associate an additive category, called its
homotopy category, denoted by Ho(C). Objects of
Ho(C) are the same as the objects of C, and
Hom(X,Y) := H'F(X,Y). Composition of arrows
is induced from )y as in (5) above. (Note u-v =
Yy (u ® v) is denoted by v o u in the usual notation.)
The object O is the zero object, and the direct sum
X @Y is the direct sum in the categorical sense.
1x gives the identity X — X.

(1.3) Definition. Let C be a quasi DG cate-
gory. A C-diagram in C® is an object of the form
K = (K™, f(ma,---,m,)), where (K™) is a sequence
of objects of C indexed by m € Z, which are zero
except for a finite number of them, and

f(my,---,m,) € F(K™, . .,Kmﬂ)%mrmlfwn
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is a collection of elements indexed by sequences
(M1 <mg < --- <my,) with g > 2. We require the
following conditions:

(i) Foreach j=2,---,u—1

TKW/(f(mh T amu))
:f<m177mj)®f<mj)am#)
in F(K™ - K™) @ F(K™, - K™).

(ii) For each (myq, -
af(my,--
+ E(_l)mw-*—ﬂ*—k*—tgpb'"’* (f(mh sy My, k7 Myt

(the sum is over ¢ with 1 < ¢ < u, and k with m; <
k< th).

For an object X in C and n € Z, one considers
the C-diagram K with K" = X, K™ =0 if m # n,
and f(M) =0 for all M = (my,...,m,). We write
X[—n] for this.

(1.4) Theorem. Let C be a quasi DG category
satisfying the extra conditions (iv), (v) of Definition
(1.1). There is a quasi DG category CA satisfying
the following properties:

(i) The objects are the C-diagrams in C.

(i) For a sequence of C-diagrams Ky, ..., K,
with n > 2, as part of the structure of a quasi DG
category, one has the corresponding complex of
abelian groups F(Ky,...,K,), and the maps ¢, o,
and @. This complex has the following description if
n = 2 and the diagrams K, Ky are “objects of C with
shifts”: For a pair of objects X, Y in C, and
m,n € Z, and the corresponding C-diagrams X[m],
Y[n], one has a canonical isomorphism of complexes

F(X[m],Y[n]) = F(X,Y)[n —m)].

-,my), one has
" my)

,my)) = 0.

In particular, in the homotopy category Ho(C?) of
C?, one has

HomHO(CA)(X[m], Y[n]) = H""F(X,Y).
Further, the map
vy H'"F(X,)Y)@ H'F(Y,Z) — H""F(X, Z)

for m,n €Z, defined using the maps o, ¢ and
F(X,Y,Z) (see the remark just before (v) in (1.1))
coincides with the map
Yy : H'F(X,Y[m]) ® H'F(Y[m)], Z[m + n))
— HF(X, Z[m + n))

defined similarly wusing the maps o,
F(X,Y[m],Z[m +n]), wvia the
H"F(X,Y) = H'F(X,Y[m]), etc.

@ and
isomorphisms
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(iii) The homotopy category Ho(C™) of C* has
the structure of a triangulated category.

For the proof, we must define the complexes
F(Ki, -+, K,) for a sequence of C-diagrams, to-
gether with maps o and ¢, satisfying the condition
(ii) of the theorem, and the axioms (i)—(iii) of
a quasi DG category. We then proceed to show
that the homotopy category of C* is triangulated.
If C is a DG category, there is a procedure to
construct a triangulated category, as in [4-6] and [9].
The present construction may be viewed as its
generalization.

82. The quasi DG category of smooth
varieties over a base. We consider quasi-
projective varieties over a field k. We refer the
reader to [1], [2], [3] for the definition of the cycle
complexes and the higher Chow groups of quasi-
projective varieties. We will use the integral cubical
version, as in [3]. Thus to a quasi-projective variety
X over k and s € Z, there corresponds the cycle
complex Z(X,-); the group Z,(X,n) is a quotient
of the free abelian group of algebraic cycles on
X x 0" of dimension s + n, meeting faces properly.
(See [3] for the precise definition, where the index-
ing is by codimension.) The variety X need not be
assumed equi-dimensional when we use the index-
ing by “dimension” instead of codimension. The
higher Chow groups are the homology groups of this
complex: CHy(X,n) = H,Z,(X,-).

Let S be a quasi-projective variety. Let
(Smooth/k, Proj/S) be the category of smooth
varieties X equipped with projective maps to S. A
symbol over S is an object the form

@ (Xo/S,70)

acA

where X, is a collection of objects in (Smooth/k,
Proj/S) indexed by a finite set A, and r, € Z.

(2.1) Theorem. There is a quasi DG category
satisfying the conditions (iv), (v), denoted by
Symb(S), with the following properties:

(i) The objects are the symbols over S.

(i) For a sequence of symbols Ky, ..., K, with
n > 2, as part of the structure of a quasi DG
category, one has the corresponding complex of
abelian groups F(Ki,...,K,), and the maps i, o,
and p. When the symbols are of the form K; = (X;/
S,1i), the corresponding complex F(Ky, ..., K,) is
quasi-isomorphic to
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Zg (X1 x5 Xo) @+ ® Zq,  (Xn-1 x5 Xp),

with d; = dim X1 — r;41 + 7, the tensor product of
the cycle complezes of the fiber products X; Xg Xi1.

We consider Symb(S)A, the quasi DG category
of C-diagrams in Symb(S), and then take its homo-
topy category. The resulting category is denoted by
D(S), and called the triangulated category of mized
motives over S. The next theorem follows from (1.3)
and (2.1).

(2.2) Theorem. For X in (Smooth/k, Proj/S)
andr € Z, there corresponds an object h(X/S)(r) :=
(X/S,r)[-2r] in D(S). For two such objects we
have

Hormpys) (h(X/S) ()21, h(Y/S) () 25 — n])
- CHdimesqu(X Xs Y, n)

the right hand side being the higher Chow group of
the fiber product X xgY.
There is a functor

h : (Smooth/k, Proj/S)™ — D(9)

that sends X to h(X/S), and a map f: X =Y to

the class of its graph [I'y] € CHaim x(Y x5 X).
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