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Construction of Poissonian Fock space: a simple proof
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Abstract:

We introduce an operator which enable us to give a simple construction of

the isomorphism from the so-called Fock space to the L?-space with respect to a Poisson measure
without combinatorial arguments in Schmidt’s orthogonalization procedure.
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1. Introduction. The Fock space associated
with a Poisson measure seems to have a long history
in physics and mathematics and the isomorphism
was known among specialists to be constructed by
Schmidt’s orthogonalization method at least in 1960’s
soon after the Wiener-Ito decomposition was fully
established. In the present note we give a simple
method of constructing the isomorphism by intro-
ducing a densely defined operator on the Fock space,
denoted by T in below. It is based upon the semi-
group structure of the configuration space and ena-
bles us to replace somewhat complicated combi-
natorial arguments in Schmidt’s orthogonalization
procedure by a simple operational calculus.

Let A be a nonnegative Radon measure on a
Polish space R. The Poisson measure with intensity
A is the (unique) probability Borel measure 7, on
the locally finite configuration space Q(R) over R
whose Laplace transform is given by

/ mA(d€)e™ &) = eXp/ (e77® — 1)\(dx)
Q(R)

R

for any continuous function f with compact support
where

€5 = fa)

i=1
if a locally finite configuration is expressed as £ =
220 b
We denote the finite configuration space by R.

It can be identified with the union of the symmetriza-
tions of product spaces R" with n > 0. Thus, we can

define a measure A on R by
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A= E o A@"
n=0

where A\®" stands for the m-fold product measure
on R". Now set H=L*(R,)\) and H=L*(R,\).
Then H is isomorphic to the direct Hilbert sum of
the n-fold product Hilbert spaces H®" with norms

weighted by 4/1/n!. In other words, H is isomorphic
to the so-called symmetric (or boson) Fock space
over H.

Theorem 1. The isomorphism 1 from the
Fock space H onto the H = L*(Q(R), ) is given by
the formula

I(f)(€) = (&, T7'f)

where &, stands for the lift of & onto R. (See,
Definition 2.)

Notice that the measure A may have both
atomic and continuous parts.

The first motivation of the present paper was to
simplify the Fock space arguments applied to the
study of the scattering length in [T1-3].

It turns out that the operator T' has some un-
expected applications, such as an explicit formula
between correlation functions and (local) density
functions in Gibbs random field theory, simplifica-
tion of the arguments for fermion (or determinantal)
and other processes in [SrT1-4] (also, cf. [So]), etc.
These results will be published elsewhere.

2. Locally finite configuration space and
finite configuration space. We denote the space
of continuous functions on R with compact support
by C.(R). Its dual space is the space of Radon mea-
sures on R. We denote by Q(R) the set of non-
negative integer-valued Radon measures on R. An
element ¢ of Q(R) is called a locally finite con-
figuration over R and is expressed as a finite or
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infinite sum of §-measures (cf. [SgT]). Also, we de-
note by R its subset of finite configurations and for a
subset A of R we write

A={XeR:X(A) = X(R)}.

An element X € R is expressed as a finite sum of
6-measures and its total mass is denoted by |X|. The
subset R, ={X € R:|X|=n} will be identified
with the n-fold symmetric product of the space R
and R with their union.

We write X < ¢ if X(z) < {(z) for each x € R

and then set
()
c(§,X) =
( ) z:X]E_z[)>O < X(.'L') )

where the product over empty set is defined to be 1,
as usual: ¢(£,0) = 1.

Notice that if X,Y € R and Y < X, then
o(X,)Y)=¢(X,X-Y).

Definition 2. For ¢ € Q(R) define the config-
uration &, lifted onto R by

&= Y d&X)sx
XeR, X<¢
and write
€)= > d&XEX)

XeR, X<¢

for a function £ on R whenever the right hand side is
summable.
3. Convolution on Fy and invariant mea-
sure 2. We need a space of test functions on R.
Definition 3. Let Fy be the set of continuous
functions £ on R which satisfy the following condi-
tions:
(a) (compact support) £(X)=0 if X(A) >0 for
some compact subset A of R.
(b) (exponential growth) |£(X)| < C'X! for some posi-
tive constant C.
For a ¢ € C.(R) define ¢ € Fy by

H(X) = Hgb(xi) if X = Zé
=1 =1

Such functions gﬁ are multiplicative on the semi-
group R:
X +Y) = (X)$(Y)
Definition 4.
FO by

X, Y eR.

We define the convolution on
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Frg(X)=> (X, V)(Y)g(X -Y) =g f(X).
Y<X

Then, the binomial theorem shows that (,zg * 1[; =
(@ +9)" .
Lemma 5. (i) Let ¢ € Cc(R). Then,
[y MdX)d(X) = al6) = exp [ M) ().
(i) If f,geFy, then, [A(dX)(fxg)(X) =

(S A@x)EC0) (A aX)g(X)).
Proof. (i) is immediate. (ii) follows from the
following: for ¢, € CL(R),

[ A@o@ s hx) = [ 3@owe+ o)

R R

= a(¢ +9) = a(d)a(y).
U

4. Operators S and S~'. For a function f on

R define

SE(X) = (X, V)E(Y).

Y<X

For instance, So(X)=(¢+1)"(X), S7'(X) =

(6 - 1)"(X).

Lemma 6. The operator S is invertible and

STHX) =Y ()X vF(Y).
Y<x
Proof. This is a version of the inclusion-exclu-
sion formula for finite sets. |
Notice that for an X € R and an f € Fy, we
have (X,,f) = ST(X).
Furthermore, if we introduce an involution
operator J (i.e., J2 = I) by

JEX)=(-DFFX)  XeRr
then, S~! = JSJ.
5. Operators T and T-'. From now on we

fix a nonnegative Radon measure A on R and denote
H=L*R,\),H=L*R,\) and H = L*(Q(R), 7).

Notice that the space Fy is dense in H and that the
space H is an L?-realization of the symmetric (or
boson) Fock space over H.

Lemma 7. For a function f € Fy define

Tf(X) = / f(X + Y)A(dY).
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Then, T defines an invertible operator from Fgy to
itself and

T'(X) = /R(fl)|y|f(X+ Y)A(dY).

Moreover, T and T~ are formally adjoint operators
of S and S~' in H, respectively.

Proof. The point of the proof is the following ob-
servation: for ¢ € C.(R)

TH(X) = a(¢)é(X) and a(¢)
It then follows that for ¢, € C.(R)
(Th, ) = a($)a(d) = a(d(y +1))
= (0, SY)n
Thus, formally, T'= 5" in H. It then follows that
T is invertible and T~! = JTJ takes the desired
form. O

6. Exponential function e;. For a given
f € C.(R) denote

e; = ¢ with ¢(x)=e /@ -1,

— TH(0).

We call such functions exponential.

Lemma 8. (i) There holds the identity
(& ep) = e &) for any f € C.(R).
(ii) Forg, v € C(R), (&, @) (6 ) = (&, (60 +

¢+P)N).

Proof. The assertion (i) is nothing but the ex-
pansion formula for the product [, a; = [[/2,(1 +
(a; — 1)). Then (ii) follows for ¢ = e~/ — 1 and ¢ =
e 9—1 since efry = (¢ + ¢ + )", The rest is a
routine work. O]

7. Isomorphism I and proof of Main
Theorem. Let us rewrite the definition of the
Poisson measure ) by using our notations.

Lemma 9.
sity X is the (unique) probability Borel measure Ty
on the locally finite conﬁgumtz’on space Q(R) such
that fQ mA(dE) (& £) = [ A( X) for any f €
Fy.

Proof. Obvious. O

Now we define the isomorphism I on F.

Definition 10. For an f € Fy define a func-

tion I(£)(€) on Q(R) by

I(£)(€) = (&.T7'f).
Let ¢,vp € C.(R). Then,
(L&), 1))y = al9) = exp(e, )y = (&, V)

Proof. It follows from the preceeding lemmas
that

The Poisson measure with inten-

Lemma 11.
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<I(€£)a1(@>ﬁ = a(py) = eXP<¢J/’>H = <€£a12)>H,
noting 1/a(¢) = a(—¢). Il

Hence we obtain the following since the func-
tions ¢, € C.(R) are dense in Fy with respect to
the norm || - ||g.

Lemma 12. (i) Iff € Fy, then, I(f) € H.

(ii) If £, g € Fy, then,
<I(f)7 I(g)>H = <f7 g>H'
In particular, IO, = £l

Now we can prove the main theorem.

Theorem 13. The operator 1 is extended to
the unitary operator from H onto H.

Proof. From the preceeding lemmas we can
extend I to the norm preserving operator from
H=L*R,\) to H=L*Q(R),)). It remains to
prove that I is onto. But it is obvious because the
functions

ale! —DI(ef) =e & feCuR)
span the Hilbert space H = L*(Q(R), T»). O

8. Remark: a characterization of the opera-
tor T. Let Cy(R) be the Banach space of bounded
continuous functions on R with supremum norm.

Definition 14. For an f € F define the func-
tional D¢ on Cy(R) by

De(0) = /R AAXEX)H(X), 6 € Co(R).

Lemma 15. ®¢(¢) is an analytic functional in
¢ € Cy(R) and its Taylor expansion at ¢ =1 is given
by

Be(1+ ) = /R A(dX)TEX)H(X)
— )+ Y [ @OTICR),

¥ € Cy(R).

Proof. The analyticity is obvious since f € Fy.
Now

Be(1+ ) = / AAX)FC0 (W + 1) ()

Si(X)
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The above lemma shows that the functional ®¢
have the derivative of order n (which is a symmetric
multilinear functional) for each n and it admits the
density Tf with respect to the product measure
A(dzy) ... A(dx,) on R".
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