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The Riemann hypothesis and functional equations for zeta functions over F;

By Sojung KiM,* Shin-ya KOYAMA™ and Nobushige KUROKAWA

koK)

(Communicated by Shigefumi MORI, M.J.A., May 12, 2009)

Abstract:

We prove functional equations for the absolute zeta functions. We also show that

the absolute zeta functions satisfy the tensor structure in the sense that their singularities possess
an additive property under the tensor product. Moreover those singularities satisfy the analog of

the Riemann hypothesis.
Key words:

1. Introduction. Let A be an F;i-algebra
which by definition is a commutative monoid. In the
recent paper [1], we defined the absolute Hasse (or
Weil) zeta function of A by

(1) r(s,A) =exp (iHom(A,,um)emS)
m=1

m
where u,, is the multiplicative group of m-th roots of
1, and Hom means the group of homomorphisms for
F'-algebras. Here we replace the previous notation T’
in [1] by e~*, and ¢"(T', A) by (r, (s, A).

If A satisfies that |[Hom(A4,u,,)| = O(e™) for
some constant ¢ > 0, the sum in (1) is absolutely con-
vergent in Re s > ¢. In particular, when |Hom(A, #,,)]
is bounded in m, it holds that (1) is valid for
Re(s) > 0.

In this paper we prove the functional equations
of (r, (s, A) for finitely generated abelian groups A.
We also deduce an analog of the Riemann Hypothe-
sis, and establish the tensor structure of singularities
of such zeta functions. In the proof a determinant ex-
pression of (g, (s, A) is crucial. In Section 2 we start
with an elementary example of zeta functions having
a determinant expression.

2. Determinant expression. For a bijection
o € Aut(X) from a given set X to itself, we define its
zeta function as

Gls) = exp (i w>

m=1
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Zeta functions; the field with one element; absolute mathematics.

When |X|=n, we identify o as an element in
S, = Aut({1,2,...,n}). The following proposition
belongs to a folklore. We are giving its proof, since
we cannot find a suitable reference.
Proposition 1. Let X and Y be finite sets.
Put | X| = n.
(1) ¢,(s) has the determinant expression

Co(s) =det(1 — ‘]\4(0)6—5)717

where M(0) = (8i0(j));j=1...n 18 the matriz rep-
resentation M : S, — GL,(C).

(i1) ¢ (s) satisfies an analog of the Riemann hypoth-
esis: (,(s) = oo implies Re(s) = 0.

(iil) (,(s) satisfies the functional equation
Co(=5) = Co(5)(=1)"sgn()e ™.

Cs(8) has the Euler product

[ a-~e)™7

PeCycle(o)

(iv)
Co(s) =

where N(P) = elensth(P),

(v) The singularities of (,(s) satisfy an additive
structure under the tensor product. Namely, a
sum of a pole of (,(s) for o € Aut(X) and a
pole of (;(s) for 7 € Aut(Y) is a pole of (yer(s),
and all poles of (yer(s) are given by this way.
Here for o € Aut(X) and 7€ Aut(Y), we de-
note their tensor product by o @ T€ Aut(X x Y).
The Laurent expansion of (;(s) around s =0 is
given as follows:

(vi)

¢o(s) = sfmc(a)f1 +O(s™™),

where m is the multiplicity of the eigenvalue 1 of

M(o) and ¢(o) = Hpecyde(g) length(P).
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Proof. (i) Let

or % ek
-1 0 (e%) *
U "M(o)U = _
0 0 Lk
0 0 - ap
be an upper triangularization. Then
det(1 — M(o)u) = det(1 — U ' M(c)Uu)
=1 -aqu) (1 - auu).
Hence
det(1—M(o)u) ' =1 —oqu) ™ - (1 —anu)”"

H exp (Z a"lu"1>
= exp <Z of' + m + oy uW) .

m=1
Then it is sufficient to show that
[Fix(e™)| =af* +--- + a".
We compute

o' -+ ’":

b; om (i)

= |Fix(a™)].

(ii) By (i), if s is a pole of (,(s), we have e’ = «; for
some j. Then

) = || = |ay] = 1.
Hence Re(s) = 0.
(iii)
Co(=3)
= det(1 — M(o)e®)™"
= det((—M(0)e®)(1 — M(c)'e®)) ™!

= (=1)"(det M(c))"e ™ det(1 — M(c) "e*)™"
= (=1)"sgn(0)e "¢ (s).
(iv) We put the decomposition into cyclic permuta-
tions as
oc=01- 0,

= (b1, 1)) (1) 15 -5 Ti(1)41(2))

o (il(1)+~-+l(r—1)+17 ey Zn)
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Let w € S, be the permutation such that w(k) = iy

for k=1,2,3,...n. Then
7 lom = (1---1(1)A(1) +1---1(1) +1(2))
S0+ o+ lr=1)+1---n).
Hence
M(m) "' M(o)M(r) = diag(Cyy, Ci), -+ Ciry)
with
0 1
tCl —
1
1 0

of size . Then

det(1 — M(o)e™®) = det(1 — M(x) ' M(c)M(r)e™)

— ﬁ(l _ e—l(J‘)S)
= [I a-wnE)™.

PeCycle(o)

(v) By (i) we have

Coor(s) = det(1 — M(oc@T)e )"

=det(1 — M(c) @ M(r)e™*)",

where ® denotes the Kronecker tensor product of
matrices. We put the eigenvalues of M(o) and M(7)
as aj (j=1,...,]1X]|) and G (k=1,2,...,]Y]), re-
spectively, We see from (i) that the poles of (,(s)
and (;(s) are given by s=loga; and s=logg;
mod 27iZ. Thus the set of poles of (,5-(s) is given by

{log a;B; mod 2miZ |1 <j<|X|, 1<k<|Y|}
The result follows from
log o; 3, = log avj + log B, mod 27iZ.
(vi) By (i), we have
o(s) = det(1 — M(0)e™*)™"
= ((1 —e )" H(l — aefs)>
a1

Hence (,(s) has a pole of order m at s = 0. The lead-
ing coefficient is calculated from (iv):

[ -~y

-1

PeCycle(o)
= JI wps+o)™
PeCycle(o)
—gm H (l(P))fl + O(s—m-H)_ 0
PeCycle(o)
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Remark 1. Under mild modifications Propo-
sition 1 can be extended for a non-bijective map o,
since the most crucial fact

|Fix(c™)| = tr(M(0)™)

remains true.
We apply Proposition 1 to our absolute Hasse
zeta function. For a finite abelian group

A%:un] X My, X - X Wy,

of order n = Hljzl nj with ni|ns| - - - |n;, we define the
absolute Frobenius operator ® 4 on the group

AP = o X XX

as
Dalar,...,0q) = (@M 04;”“).
Lemma 1. Assume that A is a finite abelian

group of order n. If

A=p, X, XX @,
with m|ng| - - - |ny, then it holds that

|[Fix(®7)]
[Hom(A, pi, )| = ITIA
Proof. First
[Hom(A, pm)| = [Hom (i, A)| = [ X],

where

X={acA|a" =1}
Look at the canonical homomorphism

AP — 4

defined by

n

(a,...,00) = (o), ... 0f"),

which is a surjective n : 1 map. Since Fix(®'}) is the in-
verse image of X, we see that |Fix(®7)| =n|X|. O
Theorem 1. Assume that A is a finite abelian
group of order n. If
A My X Py X Xy,

with my|ng| - - |y, then the absolute Hasse zeta func-
tion has the following determinant expression:

(2) CFI (87 A) - det(l — (I)Aefs)_l/m‘.

Proof. If we identify the operator ®, with the
square matrix of size n?, it holds by Lemma 1 that

1
CFI (57 A) = C‘I’A (s)W,
Thus Proposition 1 leads to the result. O
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3. Functional equations. For 1l <r € Z, we
denote by ¢,(T) € Z[T'] the Euler polynomials which
are defined recursively by

a1 (T) = T
and

r

(3) Gr+1 (T) = (kil) (T -
k=1

1) g (T).

We find inductively that degg,,1 = r for » > 1. By
[1, Lemma 2.2], we have

- r—1mv gl(T)

v=1

Example 1 (Euler polynomials).

a(T) =T,

g(T) =T,

gs(T) =T +T,

gu(T) = T3 + 4T + T.

Lemma 2 (Another expression of Euler polyno-
mials). For 1 <re€Z, we define h,(T) € Z[T) re-
cursively by

m(T)=T
and
(5)  hea(T
- r (k:l)(l - T), kThk(T) + (1 _ T)'r'—lT
k=2
(r>2)
Then forr > 1,

9:(T) = h(T).
Proof. We show that h,.(T) satisfies

N h, (T)
6 T =
(6) ; v T-17
Then the lemma follows from (4)
Put
5 =S v
v=1
Since
o0
TSy = VT,
v=1
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We compute

(M) (A=T)54 = iur(T” — T

v=0 k=0
r—1 o)
=T ()Y ST
k=0 v=0
=Ty ()Y T
k=1 v=0
~r(S sy
k=2 v=0
T( 7 (") Sk + ! )
= ")S) + ——
£ Wl 1-T
If we put
f+(T)
S, = =
(1-1)

and substitute it to (7), we find that f,.(T") is a poly-
nomial in T with f.(T) = h,.(T), because f.(T) also
satisfies (5). O

Lemma 3 (Transformation formula for Euler
polynomials). For r > 2 the Euler polynomials g,(T)
satisfy

8) 9:(T™") =T7"g:(T).
Proof. We prove by induction on r. When r = 2,

the result follows from 771 = T7-2.7. Assume that
(8) is true for any k with 2 < k < r. Then

r

gr+1 (Tﬁl) = Z (k11> (T71 - 1)7‘_k9k(T71)
k=1

= ()@ =) T g(T)
=

2
+ (Tt =)t

=71 <Z (") —T) " Tgy(T)

k=2
+(1 - T)”T)

=T""g.1(T),

where the last identity follows from Lemma 2. O
For proving the functional equations, we recall
the following fact.
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Proposition 2 ([1], Proposition 2.1). Assume
A is a finitely generated free abelian group of rank r.
Put

A%erlunlxlungx"'xlunk

with my|ng| - -+ |ng. Then

H(l 7‘d‘5) 74”,)(4)(1];724..(1’:1
—e ¢
dln
for =0,
o dls rk—1 1
[Loxp (422000 i
dln (1 _ e*lgls)r ’
. for r=1,

where the notation d|n means that the product is over
all tuples

d=(d,...,dy) e NF
such that dy|nq, d2|Z—?,.,., dy dl-»”»LZk,,' Further, we put
d| = dy ---dy

and
o(d) = @(dr) - @(dy).

Theorem 2 (Functional equations).
(i) If A is a finite abelian group, the following func-
tional equation holds:

<F1 (_5’ A) = w(A)ei‘A‘SCFH (Sv A)7

where w(A) is a complex number of modulus 1
satisfying

w(A) = (=1)" det(®4).

(il) Assume A is a finitely generated free abelian
group of rank 1. Put

A%Zx,um XMy X oo X Wy,

with my|ng| - - |ng. Then the following functional
equation holds:

CF] (_S, A) _ CF] (S, A)71 H e—p(i)dlffl...dk.
dln
1ii 1s a finitely generated abelian group of ran
i) If A fi l d abel f k
r > 2, the following functional equation holds:

<F1 (_Sv A) = CFI (5, A)(_l)r.

Proof. (i): Let |A| =n. By Proposition 1(iii),
identifying ®4 with a square matrix of size n?, we

compute



No. 6]

Coy(—5)T
=:(<¢A<s>«—1>*sgn<¢A>e-"%)
= Gr, (5, A)(—1)" det(®,)e ™
= w(A)e " Gr, (s, A).

(ii): We have g1(T) = T. Thus by Proposition 2,

CFI(_ )

|~

Mop(d)df - dy
=)= ge}{p( TP )
1 — e-ldls '
dln
This gives
CFI (S A)CFl He el o

dln

(iii): By Lemma 3, it follows for r > 2 that

e\d\ ) (d)dirﬁkal coedrt
CFI He ( ( — e@s)r E )

oINS - gyt
= HGXP( 677"5”8(1 i e\d\s)T k )

gr(eflé\s)p((_i)dq%—l .. d;l)
(1) (1~ ey’

= (p, (5, 4)7Y O

4. The Riemann Hypothesis and tensor
structure. According to the functional equations
obtained in the previous section, the Riemann Hy-
pothesis for (g, (s, A) asserts that

Re(p) =

for any singularity p, which is a zero or a pole of
10g CFI (87 A)

Theorem 3 (The Riemann Hypothesis and ten-
sor structure).

(i) When A is a finitely generated abelian group,
any singularity p of (g, (s, A) satisfies that
Re(p) =

(il) The singularities of (v, (s, A) are equipped with a
tensor structure, which means the following: For
finitely generated abelian groups A; (j=1,2)
and singularities p; for (r (s, A;), the sum
p1+ p2 is a singularity of Cr, (s, A1 X Ag). Con-
versely, all singularities of (r,(s, A1 X Aa) have
such an expression.
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Proof. (i): Proposition 2 tells that any singular-
ity p of Cp, (s, A) satisfy e”12I? = 1 for some d. Thus
p € 2mild| ' Z
(if): Since
[Hom(A, )| = m[Hom( A, ).

we have for Re(s) > 0 and a finitely generated group
A that

(9) §F1 (37 A) = exp (:L i m’"*ltr((I)Am‘ )ems>
= exp( Z Z m’ 1)\7n 7ns>
— 1 gr ()\e_s)
= exp < Z m)

where the sum is taken over n?

matrix @4, with n = | Al

eigenvalues of the

If we put n=|(41),,| and k= |(As),,|, then
[(A1 x A),,,| = nk and
(10) Paixaa), = P, ® Play),,

where ® denotes the tensor product of matrices. By
the expression (9) any singularities p; (j =1,2) of
Cr, (s, A;) satisty e’ = A; with \; an eigenvalue of
P40
given by the form A;A;. Thus for any singularity p
of (g, (s, A1 X Aj), there exist A; and Ay such that

. From (10), the eigenvalues of ®(4,.4,) —are

2)tor

el = Mg = ePlef? = el P2,

This shows the tensor structure of singularities. []

Remark 2. The direct product group is con-
sidered to be equal to the tensor product over F;.
Namely,

A1 XA2:A1®A2.

F
This is an analogous situation to the absolute tensor
product (or Kurokawa tensor product) in [4-6]. In
other words, (r, (s, A1 x A3) is analogous to

Cr, (s, A1) ® Cr, (s, A2)
under the notation in [2] and [3].
Remark 3. Concerning the Euler product ex-
pression of the absolute zeta functions, we refer to
[5], where weighted Euler products of the form

[T - nepy =y

P

is crucial.
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