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Surfaces carrying no singular functions
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Abstract: From a finite number of Riemann surfaces W; (j € J :={1,2,---,m}) we form
two kinds of Riemann surfaces, one of which is a united surface ;. ;W; and the other is simply a
bunched surface (J;.; Wj. We compare the space H(lJ;.;W;) of harmonic functions on I, ;W
and the space H({J;c; W;) of harmonic functions on (J;. ; W; and show that these are canonically
isomorphic, i.e.

jeg

H(LXJ]'GJWJ‘) = H(U]‘GJWJ')

in the sense that there is a bijective mapping ¢ of the former space onto the latter space such that ¢
is linearly isomorphic, ¢ preserves orders, i.e. tu = 0 if and only if © = 0, and ¢ fixes the real number
field R, i.e. tA = A for every A € R, under the standing assumption that all the W} are hyperbolic.
The result is then applied to give a sufficient condition better than our former one for an afforested
surface to belong to the class O, of hyperbolic Riemann surfaces carrying no nonzero singular har-
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monic functions when its plantation and trees on it are all in O;.
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We denote by H(R) the real vector space of
harmonic functions on a Riemann surface R and by
HP(R) the vector subspace of H(R) consisting of es-
sentially positive u € H(R) in the sense that |u| ad-
mits a harmonic majorant on R. Then HP(R) forms
a vector lattice with lattice operations of join VvV and
meet A so that u Vv (uAw, resp.) is the least (the
greatest, resp.) harmonic majorant (minorant, resp.)
of w and vin HP(R) on R. A uw € HP(R) is said to
be quasibounded if

(1) u= lim

uANs)V(—t
s.,teR*,s,tToo( ) ( )

locally uniformly on R and a w € HP(R) is said to be
singular if
(2) (uns)V(—t)=0

for every pair of s and t in R":={t e R:t = 0},
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where R is the real number field. On denoting by
HP,(R) (HP;(R), resp.) the vector sublattice of
HP(R) consisting of quasibounded (singular, resp.)
u € HP(R), we obtain the direct sum decomposi-
tion referred to as the Parreau decomposition of
HP(R):

(3) HP(R) = HP,(R) ® HP,(R).

We recall that Og is the class of parabolic Rie-

mann surfaces R characterized by the nonexistence
of the Green function ¢g(-,¢; R) on R with its pole ¢
in R so that R ¢ Og means that R is hyperbolic in
the sense that the Green function g(-,(;R) on R
exists for one and hence for every point ¢ in R. The
notation Ogp denotes the class of Riemann surfaces
R with HP(R) = R. Then we know the following im-
portant result of Sario and T6ki (cf. e.g. [8]):
(4)
and therefore, as far as we are concerned with the
space HP(R), it is natural to assume that R & Og
in advance in order to avoid the trivial case
HP(R) =R including HP,(R) =R and HP,(R) =
{0}. Even if R¢ O¢ it can happen the case
HP,;(R) = {0}. Then the main theme of the present
paper is the class

() O,

O¢ < Ogp (the strict inclusion relation),
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of Riemann surfaces R ¢ Og such that HP;(R) =
{0}. A typical example R in the class O; is furnished
by R € Oup \ Og (cf. (4) above).

We denote by dim R for any Riemann surface
R & O¢ the harmonic dimension of R which is the
cardinal number of the set of minimal Martin boun-
dary points of R (cf. e.g. [1]). We have shown in [4]
the following result:

(6) dim Oy :={dimR: R € O,} = N U {R¢},

where N is the set of positive integers and Nj :=
card N, the cardinal number of N, as a refinement of
the former result in [3] that dim R < X, for R € O;.
In the course of proving (6) we have introduced the
notion of, what we call, afforested surfaces.

An afforested surface

W= (P, (T});en,s (00)ien,)

consists of three ingredients: a Riemann surface P
called a plantation; a finite or infinite sequence
(T,;)Z-GNE of Riemann surfaces T, each of which is
called a tree, where N¢ := {1,2,---,£} is a finite set
if £€ N and N¢= Ny, :=N is an infinite set if
£ = Ng; a sequence (UZ-)Z.GNE of slits o; commonly in-
cluded in P and T; for each i € N¢, which are mutu-
ally disjoint and do not accumulate in P, and each o;
of which is called the root of each tree T; and at the
same time the root hole in P. We paste each T; \ o;
to P\ (U; €NEUJ») crosswise along each o; for every
i € N¢ and the resulting Riemann surface is the
afforested surface W := (P, (T3); ¢, (0i);en,)-

Our question is whether the condition P € O,
and T; € O, (i € Ng) assures that W := (P, (T}), e,
(0i);en,) € Os or not. We have seen in [5] that this is
not the case in general but on the other hand we
have also seen in [4] that if £ € N or if £ = R and

suppy; 9(+ Gi; P)
7 A4M; + 1) — <1,
() 7;\1( ) lnfmg('aCi;P)

then W € O, can be concluded. Here V; := {|z] < 1}
is a parametric disc about the point (; which corre-
spond to the center 0 of the slit o; = [—s;,s;] C Vi in
terms of the local parameter V; for each i € N. More-
over it is assumed that V;NV; =0 (i # j) and let
M; be the Harnack constant of the set {o} U3V,
with a reference point 0 € P\ ;. n(1/2)V; with re-
spect to the family H(P\ U;cn(1/2)V,)", where F*
is the class of nonnegative functions in the function
space F (see also e.g. [4] for its precise definition).
However (7) is not too good in the following two
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points. First, it is too restrictive in practical applica-
tion; at least < 1 in the condition (7) should be de-
sirably replaced by < co. Second the condition like
(7) should be something that can take care of not
only the case of £ = Ry but also that of £ € N. The
primary purpose of this paper is to replace (7) by

Supp\wg(7CL’P)
(8) X M= T

< +o00,
iEN{

under which we can conclude that P € O, and T; €
O; (i € Ng) imply W := (P, (T});en,» (0i)jen,) € Os-
Since (8) also assures that dmW =¢+1 (£€
N U {R¢}) by taking P and T; (i € N¢) in Ogp\Og,
we can also deduce (6). We remark that (8) is auto-
matically satisfied for £ € N so that it is really a con-
dition to be assumed for the case of £ = N, although
the condition (7) in which N is replaced by N, with
& € N may not be valid in general and the genuine
(7) itself may not be true even if (8) for £ = Ry holds.
Anyhow we will show in the sequel that (8) assures
W e O;, when P € Oy and T; € O, (i € Ng).

Let X and Y be two Riemann surfaces and v a
slit commonly contained in both of X and Y. We de-
note by (X\7)lJ, (Y'\7) the Riemann surface ob-
tained by pasting X \ v to Y\~ crosswise along ~.
Given a finite number, say m, of open Riemann sur-
faces W; (j € J :={1,2,---,m}). Suppose a permu-
tation J' := {j1, 42, -, Jm} of J is given. Let Z; :=
(Wi\v,) Wy, (W5, \y;,) for a common slit v;, in W),
and Wj,, Z3:= (Z1\7j2) Mfm (szz\’sz) for a com-
mon slit v;, in Z; and Wj,, and finally Z,,_; :=
(Zm—2\"j, 1) LXJ%M (W;\vj,_,) for a common slit
Vi I Zy—o and W . We then denote by LijGJVV]-
the final Riemann surface Z,,_1 neglecting how the
permutation J’ and the sequence of pasting slits
7j; (i € J) are chosen and call the surface l;. ,WW;
as a united surface consisting of W; (j € J). We can
view (J;c;W; a disconnected Riemann surface and

call it as a bunched surface consisting of W; (j € J).
We are interested in comparing ordered vector
space structures of the harmonic function spaces
H(,c,W;) and H(U;c;W;). The latter is simply
given by
H(Ujee,wj) =@ HW)) (direct sum),
jed

where we understand that u|W; =0 (i € J\{j}) for
u € H(Wj). In general, let F be an ordered vector
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space consisting of some real valued functions with
respect to function sums and function orders contain-
ing the constant function subspace R. We say that
two such spaces F1 and F, are canonically isomor-
phic, F1 = F in notation, if there is a bijective map-
ping t of F1 onto F satisfying the following 3 condi-
tions: ¢ is a vector space isomorphism of F; onto Fo;
t preserves order in the sense that ¢tf = 0 if and only
if f=20 for feFy; tA=X for every A € R. We
maintain the following assertion: if all the Riemann
surfaces W; are hyperbolic (i.e. W; & O¢) for all
j € J, then

H(M]‘EJVVJ') = H(UjeJVVj)

(canonically isomorphic).

9)

In passing we remark that the hyperbolicity of
all the W; (j € J) is essential for the validity of (9).
For, let

Wi € Oup\Og
and
Wy := C\{0,00} € O,

where C is the Riemann sphere. If H(W; & W) =
H(WLUW,) = HW;) ® H(W,), then a canonical
isomorphism ¢ here preserves HP and hence
HP(Wl X Wg) =~ HP(W1 UWQ) = HP(Wl) D
HP(Ws) so that dim HP(W; W Wy)=dim HP(W; U
W) must be true. Here e.g. dim HP(W; W Ws) is
the usual vector space dimension of the vector space
HP(W; W Ws). However, dim HP(W; W Ws) = 3 and
dim HP(W; U Wy) = 2. Therefore we see that

H(W1 X WQ) * H(W1 U WQ),

i.e. (9) may not be true when there is a W; € Og.

For the proof of (9), by using the induction, we
can assume that J = {1,2}. Let X be a hyperbolic
Riemann surface and ooy the ideal boundary of X
in the sense of Alexandroff. Any complement A of a
compact subset of X is said to be an ideal boundary
neighborhood of coxy and any two harmonic func-
tions u and v on A are said to coincide with each
other at ooy, u =v at cox in notation, if |u — v is
dominated by a potential (cf. e.g. [2]) on X on an
ideal boundary neighborhood of cox. A function s €
H(A) for an ideal boundary neighborhood A of coyx
is said to be a singularity at cox and any p € H(X)
with p = s at coy is said to be a (Dirichlet) principal
function of s on X (cf. e.g. Rodin-Sario [7]). We have
then the following useful result (cf. e.g. [6]):

Surfaces carrying no singular functions
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Principal Function Theorem. There exists
a unique principal function p on a hyperbolic Rie-
mann surface X of any given singularity s at the ideal
boundary cox of X.

To prove this let A be an ideal boundary neigh-

borhood of cox such that s € H(A) and A is the
complement of the closure X \ A of a regular sub-
region of X and B is a regular subregion of X with
B> X\A. For any f e C(0A) (C(9B), resp.) H}“
(HJ?7 resp.) is the PWB (i.e. Perron-Wiener-Brelot)
solution of Dirichlet problem on A (B, resp.) with
the boundary data f on «:=0A (§:= 0B, resp.)
(cf. e.g. [1]) so that moreover the additional con-
dition H}“ =0 at ocox is imposed upon H}‘l. Let
Ty = H]fl|ﬂ with f = Hg|a for ¢ € C(B). Since
the sup-norm of HIA on [ is strictly less than 1,
ie. ||HY B\, =:k<1, by virtue of X ¢ Og,
T:C(B) — C(p) is a bounded linear operator with
the operator norm ||T|| < k < 1, and the abstract in-
tegral equation

(I —-T)p=sp, S0:= s—Hf,1

has a unique solution ¢ € C(8) in the C. Neumann
series

o:=I—-T)"sg= ZT"SO

n=0

so that by setting f := Hf we obtain
(10)  fla=Hlo, H{ |B=(f—9)IB.

We define a p € H(X) by p|4A = H? + 50 and p|B =
H,f . We need to ascertain that these two functions
are identical on AN B. In fact, by using (10), we
have

(plA)|a = flo + sola = fla,
(p|B)|a = HJ|a = fla
so that p|A = p|B on aw = A, and similarly

(plA)|B = H}|B+ s0l8 = T + 0|8
=To+ (I =Ty =9,

(pIB)IB = H|B = ¢,

so that p|A = p|B on 8= 9dB. Since p|A = p|B on
(AN B)=0AUJB = aUf, we can conclude that
plA=p|/B on ANB. Thus p is well defined on
X and p € H(X). Then p:H}“Jrso on A shows

that p — s = HA

s and p—s = HI‘:‘_S =0 at coy and
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therefore p is a principal function for the singularity
s. The unicity of principal function for s is trivial
since, if there are two principal functions p; and
po, then p; —ps =s—s=0 at ocox and p; = ps
on X. [l

We return to the proof of (9) in the form
H(W, W Wy) =2 H(W, UW,). Fix an arbitrary ideal
boundary neighborhood A; of ooy, for j=1 and 2
such that A; C Wi ¥ W, (j=1,2) and A:= AU
Ay C Wi W Wy is an ideal boundary neighborhood of
oo, SO that A is also an ideal boundary neigh-
borhood of cow,uw,. For any u € H(W; W W), let
tu = (tl @tg)u = tiu + tu € H(Wl) D H(Wg) =
H(W; UW,) with t;u|W; =0 (i # j) and t;u = u|4;
at oow;. The bijectiveness of ¢: HW ¥ W;) —
H(W; UW;) can be easily seen by the principal func-
tion theorem and it is also easily checked that t is a
canonical isomorphism. The proof of (9) is herewith
complete.

It is seen that the order preserving and the
linear structure preserving map t = ®jcst; giving a
canonical isomorphism in (9) clearly preserves HP,
HP,, and HP;:

(11) " Q@Wi) B HY(]-E_,Wf)

(Y=P, P, P).
As a consequence of this we can deduce the following

Assertion 12. The united surface ;. ; W of
hyperbolic Riemann surfaces W; (j € J with J =
{1,2,---,m}; m € N) belongs to the class Oy if and
only if every W; € Oy (j € J).

Since an afforested surface W given by
(P,(T))jen, (0)) jen,) for a € € Nis a kind of united
surface P ¥ (bJ;cn, W), the assertion 12 assures that
W e Oy if and only if P € O, and every Tj € O
(j € N¢). Hence, in particular, if P e Oy and
T; € Os (j € N¢), then W e O,. Next, let W:=
(P,(T)) jen: (0)) jen) and assume that P € O, and
Tj € O (] S N) Wiy = <P’ (Tj)jngrla
(0)j5m1) & Oc and therefore, again by Assertion
12, W=W, ¥ (L><J1§j§mTj) € O, if and only if

Clearly
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Wi, € Og. Hence, in particular, we state the follow-
ing

Assertion 13. The membership of an afforested
surface W= (P,(T});cn, (0));en) with P € O; and
T; € O, (j €N) in O, is not affected by adding or
deleting of a finite number of trees to or from the
sequence (1) ;.-

Suppose (8) with £ =V, is valid. Then we can
find an m € N such that

> (4M; +1)

j>m

suppyy; 9( -, Gi; P)
infaz g( : 7<i; P)

suppy; 9( -5 Gi; P)
<53 M, 2 1.
- ; nfy, g(-.CGiP)

Then we have (7) for the afforested surface W, :=
(P, (T}) j=m: (0)) =) sO that we can conclude W, €
O, by our former result (cf. [4]). Adding m trees
Ty, -, T, to W, we obtain W:= (P, (Tj)jeN,
(0j)jen) and W € Oy along with W, € O; by asser-
tion 13.
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