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Principally tame regular sequences associated with the fourth Painlevé

hierarchy with a large parameter

By Takashi AOKI” and Naofumi HONDA™

(Communicated by Heisuke HIRONAKA, M.J.A., Feb. 12, 2008)

Abstract:

The notion of principally tame regular sequences is introduced for systems of

polynomials with a weight vector. As an application, construction of formal solutions is discussed
for the systems of nonlinear differential equations which belong to the fourth Painlevé hierarchy

with a large parameter.

Key words:

1. Introduction. The aim of this paper is to
establish some criteria for systems of algebraic
equations admitting finite number of solutions. As
an application, we discuss the construction of
formal solutions to differential equations which
belong to the fourth Painlevé hierarchy with a
large parameter.

The notion of tame regularity for systems of
algebraic equations (or polynomials) was intro-
duced in our previous paper [1], which guarantees
finiteness of the number of solutions if the number
of equations coincides with the dimension of the
base space (cf. Definitions 2.1 and 2.2). In [1],
the highest degree parts of the polynomials which
define the systems play a role. For a sequence of
polynomials, it is tame regular if the sequence
which consists of the highest degree parts of the
polynomials is tame regular [1; Theorem 8]. In this
paper, we show that this is also true in the case
where the degrees of polynomials are measured by
using a weight vector. This generalization provides
us much applicability: We prove the existence and
the finiteness of the leading terms of formal solu-
tions to a general member of the fourth Painlevé
hierarchy with a large parameter. Once the leading
terms are determined, the higher order terms of the
formal solutions can be obtained successively under
the condition that the Jacobi matrix of the system
never vanishes. We give a sufficient condition for
invertibility of the Jacobi matrix.
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2. Tame regular sequences and principal-
ly tame regular sequences. Let & denote the
sheaf of rings of holomorphic functions on C" and
let @ be a point in C". For holomorphic functions
fi,-..,fi on an open set U C C", we denote
the analytic set {ueU;fi(u)=---= fi(u) =0}
by V(fi,...,fi) and its germ at @4 €U by
V(@ fu,- -, fi)-

Definition 2.1 [1; Definition 2]. A sequence
{fi,fos--, fi} of elements in &; 1is said
to be tame regular at u if for any integer k so
that 0 <k<[—1 and for any (k+ 1) choice

fios fuys- -y fi, of elements in {fi, fo,..., fi}, the
element f;, is not a zero divisor on Oy/
(fios frrs -+ fu_,). Here (fi, fus---, fi,) designates
the ideal in &y generated by fi,, fi,,-- -, fi.,-

It {f1,f2,..., fi} is tame regular at 4, then
dim V(&@; fi, fiy,-- - fu)=n—k—1 or V(& fi,
fiy-oos fi,) =0 for any (k+ 1) choice fi, fis---, fi
of elements in { fi, fo, ..., fi} [1; Theorem 2].

Let R denote the ring of polynomials of u =
(u1,u, ..., u,) with complex coefficients.

Definition 2.2 [1; Definition 4]. A sequence
{fi,fay---, fi} of elements in R is said to be
tame regular (in R) if for any k so that
0<k<l-1 and any (k+1) choice fi,, fi,,---, fi.
of elements in {fi, fa,..., fi}, the element f, is

not a zero divisor on R/(fy, fi,,---,fi_,). Here
(figs furs- -+, fi,) denotes the ideal in R generated
by flgafllv e 7fl1¢,l~

We note that { f1, f2, ..., fi} is tame regular in
R if and only if { fi, fo,..., fi} is tame regular at @
for any 4@ € C" [1; Theorem 7].

Let w = (wy,ws,...,w,) be an element of N".
For a monomial cu® := cu'uy? - --ul" (c € C*), we

denote by deg,,(cu®) the degree of the monomial cu®
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with respect to the weight w. That is, we set
n

(1) deg,, (cu®) = Zw,;ozi.
i—1

For a polynomial f(u) =73 c,u® in R, we define
the degree of f with respect to the weight w by

(2) degy,(f) = max deg,(cau®).

Here we set, as usual, deg,,(0) = —oco. If deg,(f) =
m, we set

(3) cwlf)= Y o

deg, (Ca“a>:m

and call it the principal part of f with respect to the
weight w. We set 0 = 0(11_.1). A polynomial f € R
is said to be w-homogeneous if o,,(f) = f.

Definition 2.3. A sequence {fi,fo,...,fi}
of elements in R is said to be principally tame
regular with respect to the weight w if the sequence
{ow(f1),00w(f2),-..,0w(f)} is tame regular.

Theorem 2.1. Let {fi, fa,...,fi} be a se-
quence of polynomials in R. If there exists a weight
vector w = (wy, ..., w,) € N" so that the sequence is
principally tame regular with respect to w, then the
sequence is tame regular.

Proof. For the special case where w; =1 for
all j=1,2,...,n, this theorem is nothing but
Theorem 8 in [1]. General case can be reduced to
this special case by using the following

Lemma 2.2. Let fi(u),...,fi(u) (1 <n) be
elements in R and let

(4) $:Cp—C

be an algebraic mapping defined by polynomials
D,(8) (i=1,....,n) of £E=(&,..-,&). If ® is a
proper mapping, then the following two conditions
are equivalent:
(1) The sequence { fi(u),...
sequence in Cluy, . .., uy,].
(2) The sequence {®*f1(£),..., D" fi1(§)} is a tame
regular sequence in Cl&,...,&,].
Here we set ®* f(€) = f(®(£)) for f € Cluy, ..., uy].
Proof. Since ® is a proper map between two
affine spaces of the same dimension, ® is surjective
and any fiber of it is finite. It is clear that

, filw)} is a tame regular

V(®(&); fios---» fi,) =0 is equivalent to V(&
D fi,. .., f1,) =0 (& € C", k <1). There exists
a filtration

(5) Ci=V,dV,.i DD W
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consisting of locally closed sets in Cg so that the
following conditions are satisfied for i =0,1,...,n:
(i) V;is an analytic set of dimension at most 4.
(i) V; —Vi_; is a smooth manifold and if it is
not empty, then dim(V; — V,_;) = i.

(iii) @[y, _y, , is a smooth map.

Here we set V_; = (). Using this filtration and taking
an irreducible decomposition of V(&;®*f,...,
®* ), we see that

(6) dlm(v(q)(&))v flo? R flk))
= dim(V(&); (I)*flo, ey (I)*flk))

holds for any &, and for k=0,1,...,l — 1. Hence it

follows from Theorem 2 of [1] that for any & € C",

the following two conditions are equivalent:

(a) { f1,..., fi} is tame regular at ®(&)).

(b) {®*f1,...,P*f;} is tame regular at &.

Thus Lemma 1.2 follows from Theorem 7 in [1]. O
We go back to the proof of Theorem 2.1. For

the weight vector w = (wy,...,w,), we take a

proper mapping

(7) ®, : Cf — Cj

by (I)w(&,f?’ s >€n) = ( 111)17 ;)27 e '7&?1)' Since we
have o(®% f;) = ®% (0w(fi)), combining Lemma 2.2
and Theorem 8 in [1] yields Theorem 2.1. O

3. Tame regular sequences of weighted
homogeneous polynomials with holomorphic
coefficients. In this section, & denotes the sheaf
of holomorphic functions on a complex manifold 7.
Let U be an open set in T. We consider the ring

O(U)[uy,...,u,] of polynomials of uy,...,u, with
coefficients in €(U). Let w = (wy,...,w,) € N"bea
weight vector. For a polynomial of uy,...,u, with

coefficients in €(U), we can define its degree and
principal part with respect to the weight w in the
same way as for a polynomial with constant
coefficients. A polynomial f &€ O(U)[u,...,u,] is
said to be non-constant if deg,(f) > 0. For given
polynomials fi,...,fi € O(U)[uy,...,u,] and for
t € U, we denote by Vi(fi,..., fi) the algebraic set

in C"
{u S CZ, fl(tau) == fl(tvu) = O}
and by Vi(4; f1,..., fi) the germ of Vi(f1,..., fi) at
ueCj.
Theorem 3.1. Let {fi,...,fi} (1< n) be a

sequence of non-constant w-homogeneous elements
in OU)[u,...,u,]. Then the following two condi-
tions are equivalent:
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(i) For any te€U, {fi,...
sequence in R.
(ii) For any t € U, dim V;(0; f1,. ..
Remark 3.1. If [ =mn, the second condition
is equivalent to V;(0; f1,..., fi) = {0} for any ¢t € U.
Proof. Clearly the first statement implies the
second. We prove the converse. For any (k+1)
choice fi,,..., fi, of elements in {fi,..., fi}, the
algebraic set

,fi} is a tame regular

afl):n_l'

Vf/(q)juflov R (I)juflk)

is C*-conic. Here ®,, is defined by (7). Hence we
have

dim%(q);flo, ey (I)fvflk)
= dim V;(0; @}, fi,, - - -, @5 fi.)
= dith(O;flU,...,flk) =n—k—1
Combining this with
dlmv;(q)z;flm LR (I)jgflk) = dimv;(flm ey fl/;)
and Theorems 2 and 7 in [1], we see that the first
statement holds. O
Theorem 3.2. Let w € N" be a weight vec-

tor. Let {fi,...,fi} (I<n) be a sequence of
non-constant elements in O(U)[uy, ..., u,]. Let V =
V(f1,..., fi) denote the analytic set in U x C"

{(t,u) e UXC filt,u) = - = fi(t,u) = 0}

and p:U x C" — U the canonical projection with
respect to t. If {fi,...,fi} is principally tame
regular with respect to w for every t € U, then we
have the following
(i) For every fizred t € U, { f1,...
sequence.
(ii) If I = n, the restriction p|,, of p to V is a proper
map and each fiber (p|V)71(t) is a finite set.

Proof. Taking the map &,, we can assume
w=(1,1,...,1) from the beginning.
(i) By Theorem 2.1, {fi,...,fi} is a tame
regular sequence. Hence it is sufficient to show
that Vi(f1,...,f;) is not empty. Let us consider
Vi(f1,--., fi) in P" with homogeneous coordinates
(u,m) = (u,...,up,n). We set

filtou,m) = n'8 0 fi(t,u/n)

, fi} is a regular

and
Vi(fi,-- o f1) = {(u,n) € P™; fi(t,u,n) = 0 for all i}.

Then it is clear that V;(fi,...,f;) is not empty.
There exist homogeneous polynomials g;(t,u,n)
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so that for each i, we have

fi(t»Uﬂ?) = U(fz)(tv U’) + ngi(t7u7 77)
We set Hy, ={(u,n);n=0} and Vi =HyN
V}(fl, ..., fi). Then we have
Voo = {(,0); 0(f;)(t,u) = 0 for all ¢}.

By the assumption, dimV,, =n —1—1 if V,, # 0.
Thus there exist n —1 hyperplanes Hi,...,H,
mutually transversal for which

Ve NHIN---NH,_ ;=10
holds. On the other hand,
Vilfise s ) NHI OV Hy g # 0.

Thus we have V;(fi,..., fi) # 0.
(ii) Suppose that p|;, is not proper. Then there exist
a point ¢t € T and a sequence {(t(k),ugk),...,ugp)}

(k=1,2,...) in V so that

t® — ¢ and Z |u£k>| — 00.
=1

(2

Thus there exists a point (4, ...
(k)

ul n
i lug | i—1

Clearly (,4) = (£,41,...,1,) entails

, Uy, satisfying

o(f;)(t,4) =0
for i =1,...,n. This implies 4; = --- =4, = 0 and
this is a contradiction. [l

4. Tame regular sequences with parame-
ters. Let U be an open set in C and A an open
set in C¢ with d >n — 1. We assume that U and A
are connected. Let (U x A) denote the ring of
holomorphic functions of (¢,a) = (¢, a1,...,qq)
defined in U x A. For a sequence {fi,...,f,} of

polynomials in wu,...,u, with coefficients in
OU x A), we set

oFf
(8) D(t, a; u) = det (l> .

ou; ) i=1,..n

j=1,...,n
Let I, ; designate the set of subsets consisting of
n—1 elements of the set {1,2,...,d} and for
Iel, 1, we set

(9) M[(t,a;U)Zdet<% aff)ﬁ )

ot ’ 80&1‘

j=1,.., n
For ¢t € U and a € A, we denote respectively by V;,
and by V,, the algebraic set
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{ueC" filt,a,u) =+ = fult,,u) =0}
and the analytic set
{(t,u) e U x C"; fi(t,,u) = -+ = fo(t,a,u) = 0}.
For a fixed «, we set
To = p({(t,u) € Vo; D(t, o5 u) = 0}),

where p: U x C" — U denotes the canonical pro-
jection.

Theorem 4.1. Suppose that for each
(t,a) € U x A, the sequence { fi,..., fn} is princi-
pally tame regular in Cluy,. .., u,], and there exist
a point (f, a)eUxA and I€l, 1 for which
M;(t,é;u) # 0 holds for each u € Vig- Then Ty, is
a discrete set for each generic a € A. IfU=C and
every f; is a polynomial in t, then T, is a finite set.

Proof. Since the proof goes in the same way as
for any d >n —1, we will assume that d=n—1
and I ={1,2,...,n— 1}. Let X denote the product
space U x A x C". We consider the analytic variety
V defined by { f;} in X:

V:{(t,a,u) eX,fi=---=f,=0}

Let p: X — U x A denote the canonical projection.
By the assumption, p|y : V — U x A is proper and
each fiber of it is finite. We set

E=p(Vn{(t,a,u) € X; D(t,a,u) = 0}).

Since ply is proper, E is an analytic set in U x A.

Lemma 4.2. Codimension of E in U x A is
greater than or equal to 1.

Proof. Let oV, ... 4" € C" be the solutions of
fi(t,é,u) == f,(t,6,u) =0. By the assump-
tion, there exist holomorphic functions ggk) (u)
(i=1,...,n) in a neighborhood W% c C, of a®
for k=1,...,1 for which V is expressed in the form

o) ¢ and g =iy (i=2....n) nea

(t,&,a%). Then we have
8g(k> . . .
(10) det [ = x Mi(t, &, a®) = D(¢, &, a®).
(auj> u=ak)
Let W Wk — C!' be a mapping defined by
T (y) = (ggk)(u), e ,gg,k)(u)) By the Sard theorem,
the image of the set of all critical points of ) has
measure zero. Since U is proper, the image is an
analytic set with codimension greater than or equal
to 1. Thus there exist holomorphic functions
w®)(t, @) # 0 defined near (£, &) for which the image
is contained in the set defined by w® (¢, a) = 0. If we
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take a point (t, ) sufficiently close to (,&) so that
[Ticreqw®(t, @) #0. Then (t,a)¢ E. Since U x A
is connected, the codimension of E is greater
than or equal to 1. (I

For t € U, we set E; = {a € A;(t,a) € E} and
Eex = ey £i- Then, by Lemma 4.2, E. is an
analytic set with codimension greater than or equal
to 1. Hence for any & ¢ E., the set Ey, = {t ¢
U; (t,&) € E} is discrete. If f; are polynomials in ¢,
the number of irreducible components of VN {D =
0, = &} is finite. Hence Ey,, is finite. O

5. Construction of formal solutions to
the fourth Painlevé hierarchy with a large
parameter. The fourth Painlevé hierarchy was
introduced by [2] and it was investigated from the
viewpoint of the exact WKB analysis by [4-6]. In
the exact WKB analysis, a large parameter 7 is
introduced and considering formal solutions that
have expansion in the negative powers of 7 is a
starting point of the analysis. In these papers,
however, existence of such solutions is assumed.
As an application of the results obtained in the
previous sections, we prove that the assumption is
correct in general.

We employ the formulation given in [5] with
a slight modification. For m =1,2,..., the m-th
member (Py),, of the fourth Painlevé hierarchy has
the following form:

n 10, X, = 2V, + uX,, + g — 20,
n_IXmatYm = _UXyzn, + (Ym + g - a)Q - %7
where «, (3, g are arbitrary constants and X, =
K,/2"+gt, Y, =L, /2™ with polynomials K,
and L,, of unknown functions w, v and their

derivatives ' = dyu and v/ = 9,v defined recursively
by

() =r(0) ()= ()

Here we set
o (nl(u’ +udy) — n 20} n~120 > ‘
n (200, + ) n'ud, + 020}
We look for formal solutions that have expansion in
powers of n7'. We put the expressions

o0 o0
U= g nfkuk and v = E nfkvk
k=0 k=0

into these equations and compare the coefficients of
like powers of n~!. Then we have the following

(12)
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system of algebraic equations for the leading terms
ug and vg:
2Ym,0 + uUXm,O + qg— 200 = 0,

2 2
g &)
+<}/m,0+2_04) —ZZO

Here X, and Y, are polynomials of ug, vy defined
by X0 = Kino/2™ + gt, Y0 = Ly o/2™ and

(14) { 01 K10 = Oi(uoKjp +2L;0),
O Ljt10 =0 (voK,p) +v00, Ko+ udLjo

with (Ko, Loo) = (1,0). This recursive relation can
be solved with ambiguity of integration constants,
which are taken to be zero (see [5] for details).
We set fi =2Y,0+wXno+g—2a and fo=
—v0 X0+ (Ymo +9/2 — @)® — 82/4. These are pol-
ynomials of ug, vy, t.

Theorem 5.1. Foreveryt € C, { fi, fo} isa
principally tame regular sequence in Clug,vg] with
respect to the weight vector (1,2). Hence (13) admits
a finite number of solutions for every t € C.

Proof. By the first equation of (14), we have

13
(13) ey

(15) K]'-"LO = UOK]"D + 2L]'70.

The second equation can be solved under the
integrability condition 0Kj/0uy = OL;/0vy:

9
(16)  Ljr1o = 200Kj0 +uoLjo — / Kjodv.
0

Here L;o(ug,0) =0 should be satisfied and the

integrability condition for K19 and Ljiqp
requires

0K OL;
(17) g =20 = 20

(91}0 6UO

Note that the initial conditions (Ko, Loo) satisfy
the integrability condition, Loy = 0 and (17). Thus
we can solve K and L, successively retaining the
integrability condition. Combining (15) and (16),
we have

(18) K+10—U0K0+27/ KQd’U

This yields the relation
K10

1
(19) By

. o ) k
If we write Ko = >, aj(vo)ug, we have recurrent
relations
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Jj+1
k+1

Vo
a]-+170 = 2/ aj71(’t}0)d’00
0

A1 k+1 = 77 Aj ks

(20)

with initial conditions ag9 =1, a;9=0. Using
these relations, we find the following explicit form
for Ky, 0:

— m—2[,1

(21) Koo = 0<;/2 (m — 201112 Uy Y
and hence

| m+1 21 I

(22) Lm,O = ™ % “o

ridet ) (M =2+ DI = 1)

The sum of all K, has the following explicit form:

ZKmO !

V1= 2ug + (1 — 42)u2’

(23)

where we set z = vg/u?. Comparing this with the
generating function for the Legendre polynomials

1
S R =
\/1 —2rs+ 82

we have the following expression of K, in terms of
the m-th Legendre polynomial P,:

m 1
(24) K= (wVv1—42) Pm(m)
Lemma 5.2. If K,,o= L,,0 =0, then u =
Vo = 0.

Proof. The assumptions imply K110 =0 be-
cause we have (15). If wovy =0, (21) yields
up = vg = 0. Suppose that ugvy does not equal zero.
P, (z) is an odd (resp. even) polynomial if m is odd
(resp. even). It is well known that all the roots of
P,(z) =0 are simple, contained in the interval
—1 < & < 1 and the roots of P,,(z) = 0 separate the
roots of Py,11(z) = 0. In particular, P, (x) has [m/2]
roots in 0 <z < 1. For a fixed uy # 0, Kpo is a
polynomial of z of degree [m/2] and all of its roots
are contained in z < 0 which separate the roots
of K,410=0. Thus the system of algebraic
equations K, g = K110 =0 does not have a root
if UpVo 7& 0. ([

We continue the proof of Theorem 5.1. We
assign the weight 1 for uy and 2 for vy. That is, we
take a weight vector w = (1,2). Since 2mau,(f1)
2Lm70 + UOKm,O and 22m0'w(f2) ’U()Km 0 + L
is sufficient to show that

m, 0> 1
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2Lm,O + UOKm,O =0,
(25)

—w kG, + Ly, =0

implies ug = vo = 0. Eliminating L,,, we have
u2
(26) (f—ygkﬁﬁza

If vg= u3/4, we can eliminate vy in the
first equation of (25) and we have wug=0. If
K0 =0, we have L,,o =0 and hence ug = vy =0
by Lemma 5.2. By Theorem 3.1, we obtain
Theorem 5.1. ([

It follows from the second statement of
Theorem 3.2 that there exist finite numbers of
leading terms wug, vg which are algebraic functions
of t. To construct higher order terms w;, v; (j > 1)
of (12), we have to see the Jacobi matrix

on on
8u0 81}0

27 D=

e oh O
8ug 51}0

is invertible at any point in V;(fi, fo) for generic t.
Taking I of the theorem so that M; becomes the
Jacobi matrix with respect to variables t and 3, we
apply Theorem 4.1. Since

(o Bgruno) —det "0
M;(t, a, B, g; ug,vg) = det
72U0Xm,[lg - g

B uofg
= y
we can take @&, 8 and g so that Bg #0and g — 24 #
0 hold. Next we fix t =0. Then we can see that
M](t,d,,@, g; up, vg) never vanishes for any solution
(up,v9) € Voapg Thus D is invertible for generic t
and we can determine u; and vj (j > 1) successively
once we fix the leading term (ug, vp).

Remark 5.1. Our discussion is based on the
formulation of the fourth Painlevé hierarchy given
in [2,3,5]. Another formulation is given in [4] (see
also [6]). In general, the hierarchy includes integra-
tion constants which are chosen to be zero in our
discussion. This specialization does not restrict
applicability of our discussion for the general case
which includes integration constants. The algebraic
equations for the leading terms of the systems given
in [4] are obtained if we replace (15) by
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Kji0=ukKjo+2Ljp+¢;

for some integration constant c;. Our discussion can

be applied, however, to prove the existence and the

finiteness of the leading terms of formal solutions to
nonlinear differential equations which belongs to

the generalized fourth Painlevé hierarchies with a

large parameter given in [4,6] because the terms

containing the integration constants never have the
highest weight degree and they do not affect the
principal parts. That is, the principal parts of the
leading terms (with respect to 1) of K, and L, of

(3.2) in [4] are exactly the same as those of K, o and

Ly, 0, respectively and the formulation given in [6]

is equivalent to that in [4]. Moreover Theorem 4.1

also holds for the generalized systems. To see this,

it is enough to verify the condition Mj # 0 for a

parameter with the integration constants being

zero. In fact, for such a parameter the algebraic
equations with respect to the leading terms coincide
with those in this paper. Hence we can construct

formal solutions for the systems given in [4] and [6].
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