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Factorisation patterns of division polynomials

By Hugues Verdure

Institutt for matematikk og statistikk, Universitetet i Tromsø

9037 Tromsø, Norway

(Communicated by Heisuke Hironaka, m. j. a., May 12, 2004)

Abstract: The choice of an elliptic curve for the implementation of an elliptic curve cryp-
tosystem requires counting the number of points on such a curve over a finite field. An improvement
of Schoof’s algorithm for counting the number of rational points on an elliptic curve defined over
a finite field takes advantage of some factor of the division polynomials. In this paper, we study
the possible factorisations of such division polynomials.
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1. Introduction and notation. An im-
provement of Schoof’s algorithm for counting the
number of rational points on an elliptic curve de-
fined over a finite field, namely the SEA algorithm
(see [1]) takes advantage of some factor of the divi-
sion polynomials. In this paper, we study the possi-
ble factorisations of such division polynomials.

We refer to [2] for a complete overview on the
theory of elliptic curves. Let p > 3 be a prime num-
ber and q a power of p. Let Fq be the finite field with
q elements. We consider an elliptic curve E defined
over Fq by the Weierstrass equation

E : y2 = x3 + ax+ b.

If K is a field extension of Fq, the group of K-rational
points of E is denoted by E(K), and the point at
infinity O acts as the neutral element. If n is any
positive integer, we denote by E(K)[n] (or simply
E[n] if K is the algebraic closure Fq of Fq) the n-
torsion subgroup of E(K). It is known that if n is
relatively prime to p, then E[n] ≈ (Z/nZ)2. In this
case, we denote by

en : E[n]×E[n] −→ µn

the Weil pairing which is a bilinear, antisymmetric,
Galois-invariant, non-degenerate map, where µn is
the set of n-th roots of unity in Fq .

Finally, if a and b are integers, then a∨b denotes
the least common multiple of a and b.

1.1. Division polynomials. Define

ψ1 = 1, ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,
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ψ4 = 4y(x6+5ax4+20bx3−5a2x2−4abx−8b2−a3),

ψ2i+1 = ψi+2ψ
3
i − ψi−1ψ

3
i+1, i > 1,

2yψ2i = ψi(ψi+2ψ
2
i−1 − ψi−2ψ

2
i+1), i > 2.

The ψi’s are polynomials in two variables over Fq,
and working modulo the curve equation, ψ2i+1 and
(ψ2i/2y) are polynomials of one variable of degrees
2i(i+1) and 2(i−1)(i+1) respectively. These poly-
nomials have the following property:

∀P = (x, y) ∈ E(Fq)\{O},
P ∈ E[n] ⇔ ψn(x, y) = 0.

1.2. Frobenius. Define

ϕ : E(Fq) −→ E(Fq)
(x, y) �−→ (xq, yq)
O �−→ O

.

This is the Frobenius endomorphism, and it charac-
terizes the Fqn-rational points:

∀P ∈ E(Fq), P ∈ E(Fqn) ⇔ ϕn(P ) = P.

1.3. Twists. Let D be a non-square in Fq.
Define

ẼD : y2 = x3 +D2ax+D3b.

This is an elliptic curve defined over Fq, which is
isomorphic to E over Fq2 . If δ ∈ Fq2 is such that
δ2 = D, then an isomorphism is given by

φδ : E(Fq) −→ ẼD(Fq)
(x, y) �−→ (Dx, δ3y)
O �−→ O

.

Twists have the property that

#E(Fq) + #ẼD(Fq) = 2q + 2
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and

#E(Fq) ·#ẼD(Fq) = #E(Fq2 ).

2. Patterns of l-th division polynomials.
We want to find all the possible factorisation pat-
terns of division polynomials of elliptic curves de-
fined over a finite field. In this section, we see which
factorisations can occur. We begin with some useful
notation: Given a polynomial P defined over a field
K, unique factorisation yields P as a product of a
constant k ∈ K and monic irreducible polynomials
which are unique up to order. Let us suppose that
we have arranged these polynomials so that

P = k

d∏
i=1

ni∏
j=1

Pi,j

where k ∈ K, the Pi,j are monic irreducible polyno-
mials, and α1, . . . , αd are positive integers with the
following property: for each integer i between 1 and
d, the polynomials Pi,1, . . . , Pi,ni are all of degree αi.
Then we will say that P has factorisation pattern (or
just pattern for short)

((α1, n1) , . . . , (αd, nd)) .

Note that the degrees αi need not be distinct. If
they are, and indeed arrange them in ascending order
α1 < · · · < αd, then with these extra conditions
imposed, the pattern will be unique. However, it
will be convenient for us in the sequel not to make
such assumptions.

Example 1. Over R, the polynomial

P (X) = X5 + 2X4 +X3 −X2 − 2X − 1

factors as

P (X) = (X + 1)(X + 1)(X − 1)(X2 +X + 1).

Thus P (X) has pattern ((1, 1) , (1, 1) , (1, 1) , (2, 1))
or, equivalently ((1, 3) , (2, 1)).

The study of division polynomials is related to
the study of torsion subgroups, and finding the fac-
torisation pattern is almost equivalent to finding the
degrees of the extensions over which a torsion point
is defined. Thus, studying the action of the Frobe-
nius on torsion subgroups will give the desired an-
swer. We will distinguish between two major cases:
either all the l-torsion points generate the same ex-
tension, or they generate different extensions. In the
first case, the Frobenius endomorphism is difficult to
describe, but the factorisation is quite straightfor-

ward, while in the second case, the Frobenius is easy
to make explicit.

2.1. The l-torsion generate the same ex-
tension. When all the l-torsion points generate the
same extension of Fq, then all the irreducible factors
of ψl(x) have the same degree, namely the degree of
this extension, or half of it.

Proposition 1. Let E be an elliptic curve de-
fined over Fq, and let l �= p be an odd prime. Let
α be the degree of the minimal extension over which
a l-torsion point on E is defined. Let β = α if α
is odd, and β = α/2 if α is even. Assume finally
that E[l] ⊂ E(Fqα). Then the factorisation pattern
of ψl(x) is ((

β,
l2 − 1

2β

))
.

Proof. Let I(x) be an irreducible factor of
ψl(x), and d its degree. Let x0 ∈ Fqd be a root
of I. Let y0 be a root of y2 − x3

0 − ax0 − b. Then
the point P = (x0, y0) is a point of l-torsion, and
is defined over either Fqd or Fq2d , thus α = 2d or
α = d.

If α is odd, then we must have d = α. As-
sume then that α = 2β is even. Let D ∈ Fqβ be a
quadratic non-residue, and consider the elliptic curve
ẼD. We have
(1)

#E(Fqβ)#ẼD(Fqβ ) = #E(Fqα) = #ẼD(Fqα ).

Since all the l-torsion points of E are in E(Fqα ),
then all the l-torsion points of ẼD are in ẼD(Fqα)
by isomorphism. But by hypothesis, l � | #E(Fqβ ),
so that in fact, all the l-torsion points of ẼD are in
ẼD(Fqβ ) using (1) modulo l. This means that

Dx0 ∈ Fqβ ⇒ x0 ∈ Fqβ ,

so that d � β. With what we have seen before, d =
β.

Thus, all the irreducible factors of ψl(x) have
the same degree, namely β. Now, since the degree of
ψl(x) is (l2 − 1)/2, we get the desired result.

Example 2. Let E be the elliptic curve de-
fined over F29 by

E : y2 = x3 + x+ 3.

For l = 11, we get that α = 40, and the pattern of
ψ11(x) is ((20, 3)).

2.2. The l-torsion points generate dif-
ferent extensions. In this case, we see that the
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Frobenius has an eigenvector, and then using the
Weil pairing, we can define some invariants that will
give us the factorisation of the l-th division polyno-
mial.

Lemma 1. Let E be an elliptic curve defined
over Fq. Let α be the degree of the minimal extension
over which a l-torsion point is defined. Assume that
E[l] �⊂ E(Fqα ). Then there exists ρ ∈ F∗

l of order
α and a basis (P,Q) of E[l] over Fl in which the
n-th power of the Frobenius endomorphism can be
expressed as:[

ρn 0

0
(

q
ρ

)n

]
if ρ2 �= q,

[
ρn nρn−1

0 ρn

]
otherwise.

The number ρ is uniquely defined by the above prop-
erties.

Proof. Let P ∈ E(Fqα)[l] be non-zero. If ϕ(P )
was not a multiplum of P , then together with P ,
it will be a basis of E[l], which will contradict the
assertion E[l] �⊂ E(Fqα ). Thus, there exists ρ ∈ F∗

l

such that ϕ(P ) = ρP . Since P is defined over Fqα ,
we must have that the order of ρ is α.

Let then Q be another l-torsion point such that
(P,Q) is a basis of E[l]. Write ϕ(Q) = λQ+µP . Let
ζ = el(P,Q). It is a primitive l-th root of unity since
(P,Q) is a basis. Then

ζq = el(P,Q)ϕ = el(ϕ(P ), ϕ(Q))

= el(ρP, λQ+ µP ) = el(P,Q)ρλ = ζρλ.

Since ζ is primitive, we must have λρ = q in Fl, and
thus

ϕQ =
q

ρ
Q+ µP.

Now, if (q/ρ) �= ρ, then Q can be chosen such that
µ = 0, while otherwise µ �= 0. But then, changing P
to µP , we still have

ϕ(P ) = ρP

and

ϕ(Q) =
q

ρ
Q+ P = ρQ + P.

A recursion then gives the first part.
The fact that ρ is unique comes from the fact

that it is the eigenvalue corresponding to points de-
fined over Fqα , and those are multiples of P .

Proposition 2. Let E be an elliptic curve de-
fined over Fq. Let α be the degree of the minimal ex-
tension over which E has a non-zero l-torsion point.
Assume that E[l] �⊂ E(Fqα ). Let ρ ∈ F∗

l be as de-
fined in Lemma 1. Let β be the order of (q/ρ) in F∗

l .
Then the pattern of ψl(x) is:((

α, l−1
2α

)
,
(
β, l−1

2β

)
,
(
α ∨ β, (l−1)2

2(α∨β)

))
if α and β are odd, and q �= ρ2,((

α, l−1
2α

)
,
(

β
2 ,

l−1
β

)
,
(
α ∨ β, (l−1)2

2(α∨β)

))
if α is odd, β is even and q �= ρ2,((

α
2 ,

l−1
α

)
,
(
β, l−1

2β

)
,
(
α ∨ β, (l−1)2

2(α∨β)

))
if α is even, β is odd and q �= ρ2,((

α
2 ,

l−1
α

)
,
(

β
2 ,

l−1
β

)
,
(

α∨β
2 , (l−1)2

α∨β

))
if α and β are even and q �= ρ2,((

α, l−1
2α

)
,
(
αl, l−1

2α

))
if α is odd and q = ρ2,((

α
2
, l−1

α

)
,
(

αl
2
, l−1

α

))
if α is even and q = ρ2.

Proof. We use the following property: if I is
an irreducible factor of ψl(x) of degree d, and P a
point of l-torsion corresponding to one of its roots,
then d is the minimal positive integer n such that
ϕn(P ) = ±P . This comes from the fact that the
Frobenius on the points is defined componentwise by
the Frobenius on the field, and that two points have
the same x-coordinate if and only if they are equal
or opposite. Let (P,Q) be a basis as described in
Lemma 1. We now distinguish between the two cases
q �= ρ2 and q = ρ2.

In the first case, if R is a l-torsion point which
is a non-zero multiplum of P , we have ϕn(R) = ±R
with n minimal if and only if n = α or n = α/2
depending on the parity of α. If R is a l-torsion
point which is a non-zero multiplum of Q, then we
have ϕn(R) = ±R with n positive minimal if and
only if n = β or n = β/2 depending on the parity of
β. Finally, if R is any non-zero l-torsion point not
of the two previous forms, then ϕn(R) = ±R with n
minimal if and only if n = α∨ β or n = (α ∨ β)/2 in
the case when both α and β are even. We then count
the number of points of each type, namely l−1, l−1
and (l − 1)2, to find the number of factors of each
type.

In the second case, a point which is a non-zero
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multiplum of P leads to factors of degree α and α/2
as before. If R is not a multiplum of P , then in order
to have ϕn(R) = ±R, we have to have that ρn = ±1
and nρn−1 = 0. Then, depending on the parity of
α, we have that n = α ∨ l or n = (α/2) ∨ l. Finally
since α | l − 1, it is relatively prime to l, and these
two values are respectively αl and αl/2. We find the
number of different factors as before.

Example 3. Consider the elliptic curve

E : y2 = x3 + x+ 5

defined over F17 and take l = 7. Then α = 2, ρ = 6
and β = 3. The pattern of ψ7(x) is

((1, 3) , (3, 1) , (6, 3)) .

Example 4. Consider the elliptic curve

E : y2 = x3 + 3x+ 20

defined over F29 and take l = 7. Then α = 2 and
ρ = 6. The pattern of ψ7(x) is

((1, 3) , (7, 3)) .
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