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On WKB analysis of higher order Painlevé equations

with a large parameter
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Abstract: We announce a generalization of the reduction theorem for 0-parameter solu-
tions of the traditional (i.e., second order) Painlevé equations with a large parameter to those of
some higher order Painlevé equations, i.e., each member of the Painlevé hierarchies (PJ) (J = I,
II-1 and II-2) discussed in [KKNT]. Thus the scope of applicability of the reduction theorem
([KT1, KT2]) has been substantially enlarged; only six equations were covered by our previous
result, while the result reported here applies to infinitely many equations.
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0. Introduction. The purpose of this arti-
cle is to report that a 0-parameter solution of a
higher order Painlevé equation (PJ)m (J = I, II-1,
II-2; m = 1, 2, . . .) can be formally reduced to a
0-parameter solution of (PI)1, i.e., the traditional
Painlevé equation (PI) with a large parameter, near
its turning point of the first kind (in the sense of
[KKNT]). This is a substantial generalization of our
earlier result ([KT2]; its core part was announced in
[KT1]), which is concerned with the traditional (i.e.,
second order) Painlevé equations; thus it covers only
six equations (PJ) (J = I, II, . . . ,VI), while the result
announced in this article applies to infinitely many
equations, i.e., each member of the Painlevé hierar-
chy (PJ)m (J = I, II-1, II-2; m = 1, 2, . . .) with a
large parameter η. Here and in what follows we use
the same notions and notations as in [KKNT]. In
order to give the reader some idea of the “higher or-
der Painlevé equations” discussed here, we recall the
definition of (PI)m together with the underlying Lax
pair (LI)m, i.e., a system of linear differential equa-
tions whose compatibility condition is described by
(PI)m. See [KKNT] for (PJ)m and (LJ )m (J = II-1,
II-2). See also [S], [GJP] and [GP] for the equations
without the large parameter.

Definition 0.1. The m-th member of PI-
hierarchy with a large parameter η is the following
system of non-linear differential equations:
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(0.1)

(PI)m :



duj

dt
= 2ηvj (j = 1, . . . , m) (0.1.a)

dvj

dt
= 2η(uj+1 + u1uj + wj) (0.1.b)

(j = 1, . . . , m)
um+1 = 0,

where wj is a polynomial of uk and vl (1 ≤ k, l ≤ j)
that is determined by the following recursive relation:

wj =
1
2

( j∑
k=1

ukuj+1−k

)
+

j−1∑
k=1

ukwj−k

(0.2)

− 1
2

( j−1∑
k=1

vkvj−k

)
+ cj + δjmt (j = 1, . . . , m).

Here cj is a constant and δj,m stands for Kronecker’s
delta.

Remark 0.1. The system (PI)m is seen to be
equivalent to a single 2m-th order differential equa-
tion. For example, (PI)1 is equivalent to

(0.3) u′′1 = η2(6u2
1 + 4c1 + 4t),

the traditional Painlevé equation (PI), and (PI)2 is
equivalent to the following fourth order equation:

u
(4)
1 = η2(20u1u

′′
1 + 10(u′1)

2)(0.4)

+ η4(−40u3
1 − 16c1u1 + 16c2 + 16t).

The underlying Lax pair (LI)m of (PI)m is given
by the following:
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(0.5) (LI)m :


(
∂

∂x
− ηA

)→
ψ = 0 (0.5.a)(

∂

∂t
− ηB

)→
ψ = 0 (0.5.b)

where
→
ψ = t(ψ1, ψ2),

A =

(
V (x)/2 U(x)

(2xm+1 − xU(x) + 2W (x))/4 −V (x)

)
,

(0.6)

and

B =
(

0 2
u1 + x/2 0

)
,

(0.7)

with

U(x) = xm −
m∑

j=1

ujx
m−j ,(0.8)

V (x) =
m∑

j=1

vjx
m−j ,(0.9)

and

W (x) =
m∑

j=1

wjx
m−j .(0.10)

See [KKNT, Proposition 1.1.1] for the proof of the
fact that (PI)m is the compatibility condition for
(LI)m.

As in the case of the traditional Painlevé equa-
tions (cf. [KT2]), we can construct the so-called 0-
parameter solution (ûj , v̂j) of (PI)m of the following
form:

ûj(t, η) = ûj,0(t) + η−1ûj,1(t) + · · · ,(0.11)

v̂j(t, η) = v̂j,0(t) + η−1v̂j,1(t) + · · · .(0.12)

In what follows we always substitute the 0-parameter
solution into the coefficients of (LI)m. Accordingly
the matrices A and B are also expanded in powers of
η−1; their top degree parts are respectively denoted
by A0 and B0.

In studying the structure of 0-parameter solu-
tions, we can readily find the structure of v̂j from
that of ûj, thanks to (0.1.a). Hence we concentrate
our attention to ûj’s, or rather the solutions

(0.13)
bj(t, η) = bj,0(t) + η−1bj,1(t) + · · · (1 ≤ j ≤ m)

of the equation U(bj(t, η)) = 0, that is,

(0.14) bj(t, η)m −
m∑

j=1

ûj(t, η)bj(t, η)m−j = 0.

We note that {bj}j=1,...,m appear as a straight-
forward counterpart of the traditional Painlevé tran-
scendents in the original formulation of Shimomura
([S]) of higher order Painlevé equations from the
viewpoint of the Garnier system. The passage from
{bj} to their elementary symmetric polynomials {uj}
seems to ameliorate the global behavior of functions
in question, which is not our immediate concern here
(cf. [S]).

Now, our goal (Theorem 3.1 below) is to re-
late bj(t, η) with a 0-parameter solution of the tradi-
tional Painlevé-I equation through a formal transfor-
mation. In constructing the required transformation,
we first rewrite (LJ)m (J = I, II-1, II-2) as a pair of
a Schrödinger equation (SLJ )m and its deformation
equation (DJ )m (Section 1) and then analyze solu-
tions of the Riccati equation associated with (SLJ )m

near x = bj,0(t), the top order part of bj(t, η) (Sec-
tion 2). Making full use of the results in Section 2, we
construct an appropriate semi-global transformation
that brings (SLJ )m to (SLI)1 and the constructed
transformation is used to reduce bj to a 0-parameter
solution of (PI)1.

The details of this article shall be published else-
where.

1. Derivation of a Schrödinger equation
(SLJ)m and its deformation equation (DJ)m.
If we let ψ denote

(1.1) exp
(
−
∫ x Ux

2U
dx

)
ψ1 =

1√
U
ψ1

for the first component ψ1 of the unknown vec-

tor
→
ψ of (0.5.a), we find ψ satisfies the following

Schrödinger equation (SLI)m:

(SLI)m
∂2ψ

∂x2
= η2Q(I,m)ψ

where

Q(I,m) =
1
4
(2xm+1U − xU2 + 2UW ) +

1
4
V 2

(1.2)

− η−1V Ux

2U
+
η−1Vx

2
+

3η−2U2
x

4U2
− η−2Uxx

2U
.

Making use of (0.5.b), we can find its deforma-
tion equation (DI)m, an equation compatible with
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(SLI)m:

(DI)m
∂ψ

∂t
= a(I,m)

∂ψ

∂x
− 1

2
∂a(I,m)

∂x
ψ,

where

(1.3) a(I,m) =
2
U
.

Now we note that Q(I,m),0, the highest degree term
in η of Q(I,m), has the form

1
4
(x+ 2û1,0)U0(x)2(1.4)

=
1
4
(x+ 2û1,0)

(
xm −

m∑
j=1

ûj,0x
m−j

)2

.

(See [KKNT, §2.1] for the details.) Hence x =
bj,0 (1 ≤ j ≤ m) is a double turning point of
(SLI)m. Similar observations are made also for
(SLJ )m (J = II-1 and II-2). Thus, it is natural to
expect that the setting of [KT2] may be also appli-
cable to (SLJ )m (J = I, II-1, II-2), and this expec-
tation is really validated as is discussed below. For
the reference we note that the deformation equation
(DJ)m (J = II-1, II-2) for ψ = x1/2T

−1/2
m ψ1 (in the

case of (LII-1)m) and ψ = T
−1/2
m ψ1 (in the case of

(LII-2)m; for the sake of simplicity we assume cj =
0 (1 ≤ j ≤ m − 1) in (1.3.9) of [KKNT]. To avoid
some degeneracy we also assume c �= 0 in (1.2.1)
(resp., δ �= 0 in (1.3.1)) of [KKNT]) is given respec-
tively with

a(II-1,m) =
2gx
Tm

(1.5)

and

a(II-2,m) =
g

2Tm
,(1.6)

where g is a non-zero constant and Tm is a polyno-
mial of degree m in x whose coefficients are given in
terms of (0-parameter) solutions of (PJ)m.

2. Regularity of Sodd near x = bj,0(t).
In this section we omit the suffix (J,m) of Q(J,m)

and a(J,m). Let S± respectively denote the solution
of the Riccati equation associated with (SLJ )m, i.e.,

(2.1) (S±)2 +
∂S±

∂x
= η2Q,

that begins with ±η√Q. Then Sodd is, by definition,

(2.2) Sodd =
1
2
(S+ − S−).

We note that this definition of Sodd is different from
that used in [KT2]; one important point is that Sodd

thus defined may contain a term whose degree in η

is even. Although we do not discuss the details here,
Sodd thus defined is free from even degree terms for
J = I, just like Sodd in [KT2], but not for J = II-1
or II-2. As is shown in [AKT, §2], we can verify

(2.3)
∂Sodd

∂t
=

∂

∂x
(aSodd)

for Sodd thus defined. Using (2.3), we can prove the
following

Theorem 2.1. The series Sodd and aSodd are
holomorphic on a neighborhood of x = bj,0(t) (1 ≤
j ≤ m) in the sense that each of their coefficients
as formal power series in η−1 is holomorphic on a
neighborhood of x = bj,0(t).

3. Reduction of bj(t, η) (j = 1, · · · , m)
to a 0-parameter solution of (PI)1. Let t = τ

be a turning point of the first kind of (PJ)m (J =I,
II-1, II-2) in the sense of [KKNT]. (We note that
every turning point is of the first kind if m = 1, i.e.,
for the traditional Painlevé equations.) Let us fur-
ther assume that τ is simple in the sense of [AKKT]
(with using a local parameter of the Riemann sur-
face R of the 0-parameter solution as independent
variable. Note that, as is explained in [KKNT] and
[NT], the Stokes geometry of (PJ)m lies on R and
that a turning point of the first kind is in general
a square-root type branch point of R.) Then there
exist a double turning point bj,0(t) and a simple turn-
ing point a(t) of (SLJ )m which merge at τ , and there
exists an analytic function νj(t) for which

(3.1)
∫ t

τ

νj(s)ds = 2
∫ bj,0(t)

a(t)

√
Q(J,m),0(x, t)dx

holds. (See [KKNT, §2] for the proof.) Note that a
Stokes curve of (PJ)m that emanates from τ is, by
definition, given by

(3.2) Im
∫ t

τ

νj(s)ds = 0.

It follows from (3.1) that

(3.3) Im
∫ bj,0(t)

a(t)

√
Q(J,m),0(x, t)dx = 0

holds if t lies in the Stokes curve of (PJ)m. Otherwise
stated, if t lies in the Stokes curve of (PJ)m, the dou-
ble turning point bj,0(t) and a simple turning point
a(t) of (SLJ )m are connected by a Stokes segment
γ. Using Theorem 2.1, we can prove the following
Proposition 3.1 in this geometrical setting:
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Proposition 3.1. Let τ be a simple turning
point of the first kind of (PJ)m (J = I, II-1, II-2),
and let σ (�= τ ) be a point that is sufficiently close
to τ and that lies in a Stokes curve of (PJ)m which
emanates from τ . Then there exist a neighborhood
Ω of the above mentioned Stokes segment γ, a neigh-
borhood ω of σ and holomorphic functions x̃j(x, t)
(j = 0, 1, 2, · · ·) on Ω × ω and t̃j(t) (j = 0, 1, 2, · · ·)
on ω so that the following relations may hold :

(i) The function t̃0(t) satisfies

(3.4)
∫ t

τ

νj(s)ds =
∫ t̃

0

√
12λ0(s̃)ds̃

∣∣∣
t̃=t0(t)

,

where λ0 =
√−s̃/6, and, in particular, dt̃0/dt �= 0

holds on ω, if ω is chosen sufficiently small.
(ii) x̃0(bj,0(t), t) = λ0(t̃0(t)) and x̃0(a(t), t) =

−2λ0(t̃0(t)).
(iii) ∂x̃0/∂x �= 0 on Ω× ω.
(iv) Letting x̃(x, t, η) and t̃(t, η) respectively de-

note
∑

j≥0 x̃j(x, t)η−j and
∑

j≥0 t̃j(t)η
−j , we find

the following relation:

Q(J,m)(x, t, η) =
(
∂x̃

∂x

)2

Q̃(x̃(x, t, η), t̃(t, η), η)

(3.5)

− 1
2
η−2{x̃(x, t, η); x},

where {x̃; x} denotes the Schwarzian derivative and
Q̃(x̃, t̃) is the potential of the Schrödinger equation
(SLI) in [KT2], i.e.,

Q̃(x̃, t̃) = 4x̃3 + 2t̃x̃+ ν2
I − 4λ3

I − 2t̃λI(3.6)

− η−1 νI

x̃− λI
+ η−2 3

4(x̃− λI)2
,

with

λI(t̃, η) being a 0-parameter solution of (PI),
(3.7)

i.e., λ
′′
I = η2(6λ2

I + t̃), and νI being η−1dλI/dt̃.

Using the transformations x̃(x, t, η) and t̃(t, η)
constructed above, we can show

(3.8)

S(J,m),odd(x, t) =
(
∂x̃

∂x

)
SI,odd(x̃(x, t, η), t̃(t, η), η).

This relation and Theorem 2.1 entail the following
Theorem 3.1. In the situation of Proposi-

tion 3.1, we have

(3.9) x̃(x, t, η) |x=bj(t,η)= λI(t̃(t, η), η).
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