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Abstract:

We announce a generalization of the reduction theorem for O-parameter solu-

tions of the traditional (i.e., second order) Painlevé equations with a large parameter to those of
some higher order Painlevé equations, i.e., each member of the Painlevé hierarchies (Py) (J =1,
II-1 and II-2) discussed in [KKNT]. Thus the scope of applicability of the reduction theorem
([KT1, KT2]) has been substantially enlarged; only six equations were covered by our previous
result, while the result reported here applies to infinitely many equations.
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0. Introduction. The purpose of this arti-
cle is to report that a O-parameter solution of a
higher order Painlevé equation (Py),, (J = I, II-1,
11-2; m = 1,2,...) can be formally reduced to a
O-parameter solution of (Pr)i, i.e., the traditional
Painlevé equation (Pr) with a large parameter, near
its turning point of the first kind (in the sense of
[KKNT]). This is a substantial generalization of our
earlier result ([KT2]; its core part was announced in
[KT1]), which is concerned with the traditional (i.e.,
second order) Painlevé equations; thus it covers only
six equations (Py) (J = L1I,..., VI), while the result
announced in this article applies to infinitely many
equations, i.e., each member of the Painlevé hierar-
chy (Pj)m (J =1, II-1, 1I-2; m = 1,2,...) with a
large parameter 1. Here and in what follows we use
the same notions and notations as in [KKNT]. In
order to give the reader some idea of the “higher or-
der Painlevé equations” discussed here, we recall the
definition of (Pr),, together with the underlying Lax
pair (L1)m, i.e., a system of linear differential equa-
tions whose compatibility condition is described by
(P1)m. See [KKNT] for (Py)m and (Lj)m (J =1I-1,
I1-2). See also [9], [GJP] and [GP] for the equations
without the large parameter.

Definition 0.1. The m-th member of Pi-
hierarchy with a large parameter 7 is the following
system of non-linear differential equations:
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(0.1)
%2277%» (j=1,...,m) (0.1.a)
(Pt)m : dditj =2n(uj+1 + uruj + wj) (0.1.b)
(j=1,...,m)
Um+1 = 0,

where w; is a polynomial of ug and v; (1 <k, I < j)
that is determined by the following recursive relation:

(0.2)
1 J j—1

w; = 5 (Zukuj+1_k> + Zukwj_k
k=1 k=1

i—1
1/% :
— 5( E Uk’Uj_k> +cj+oimt (F=1,...,m).
k=1

Here c; is a constant and §; ,, stands for Kronecker’s
delta.

Remark 0.1.
equivalent to a single 2m-th order differential equa-
tion. For example, (Pr); is equivalent to

The system (Pp),, is seen to be

(0.3) uf = n?(6u? + 4ey + 4t),

the traditional Painlevé equation (FPy), and (Py)q is
equivalent to the following fourth order equation:

0.4) u{" = n2(20uu) + 10(u})?)
+ n*(—40u? — 16¢1u; + 16¢o 4 16t).

The underlying Lax pair (L), of (P1)m is given
by the following:
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(% - A> =0 (0.5.2)
(05) (Ll)m 9 _
(& - nB> =0 (0.5.b)
where E = t(wla wQ)a
(0.6)
Ao V(z)/2 U(x)
(22™ ! —2U(z) + 2W(2))/4 —V(z))’
and
(0.7)
0 2
B= <u1+x/2 O> ’
with
(0.8) U(z) =a™ — Z g™,
(0.9) V(z) = Zvjxm_j,
and
(0.10) W(z) = ijxm_j.

See [KKNT, Proposition 1.1.1] for the proof of the
fact that (Pr),, is the compatibility condition for
(Ll)m-

As in the case of the traditional Painlevé equa-
tions (cf. [KT2]), we can construct the so-called 0-
parameter solution (i, ;) of (Pr)n, of the following
form:
(0.11)  a(t,m) = a50(t) +n~ aga(t) + -,
0t m) = 0j,0(t) + 07 50 (t) + -

In what follows we always substitute the O-parameter
Accordingly

(0.12)

solution into the coefficients of (Li),.
the matrices A and B are also expanded in powers of
n~!; their top degree parts are respectively denoted
by Ag and By.

In studying the structure of O-parameter solu-
tions, we can readily find the structure of 9; from
that of @;, thanks to (0.1.a). Hence we concentrate
our attention to 4;’s, or rather the solutions

(0.13)

bi(t,n) =bjo(t) + 1 bja(t)+--- (1<j<m)

[Vol. 80(A),
of the equation U(b;(t,n)) = 0, that is,

m .
(0.14)  by(t,m)™ = > it m)bs(¢,m)™ 7 = 0.

j=1

We note that {b;},=1,. m» appear as a straight-
forward counterpart of the traditional Painlevé tran-
scendents in the original formulation of Shimomura
([S]) of higher order Painlevé equations from the
viewpoint of the Garnier system. The passage from
{b;} to their elementary symmetric polynomials {u, }
seems to ameliorate the global behavior of functions
in question, which is not our immediate concern here
(ct. [S]).

Now, our goal (Theorem 3.1 below) is to re-
late b;(t,n) with a O0-parameter solution of the tradi-
tional Painlevé-I equation through a formal transfor-
mation. In constructing the required transformation,
we first rewrite (L), (J =1, II-1, II-2) as a pair of
a Schrodinger equation (SLj),, and its deformation
equation (D)., (Section 1) and then analyze solu-
tions of the Riccati equation associated with (SL ),
near x = bjo(t), the top order part of b;(t,n) (Sec-
tion 2). Making full use of the results in Section 2, we
construct an appropriate semi-global transformation
that brings (SLj)m to (SL1); and the constructed
transformation is used to reduce b; to a O-parameter
solution of (Pr);.

The details of this article shall be published else-
where.

1. Derivation of a Schrédinger equation
(SLj)m and its deformation equation (D).
If we let v denote

exp (—/ ﬁdx> Py = %wl

for the first component 1, of the unknown vec-

tor ¢ of (0.5.a), we find ¢ satisfies the following
Schrodinger equation (SLy)m:

(1.1)

0%
(SLi)m 9z = 12 Q (1) ¥
where
(1.2)
1 1

Qum) = Z(2xm+1U — U2+ 2UW) + sz

VU Ve 30U 0 U

2U 2 AU2 o

Making use of (0.5.b), we can find its deforma-
tion equation (D), an equation compatible with
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(SL1)m:

where

(13) ) = 7

Now we note that Q(,m),0, the highest degree term
in 1 of Q(1,m), has the form

(1.4) i(x + 21 0) U (x)?

1 R . m R i 2
= Z(Jc + 241 0)| 2™ — Z Uj oz .
j=1

(See [KKNT, §2.1] for the details.) Hence x =
bjo (1 < j < m) is a double turning point of
(SL1)m. Similar observations are made also for
(SLj)m (J =1II-1 and II-2). Thus, it is natural to
expect that the setting of [KT2] may be also appli-
cable to (SLj)m (J =1, II-1, 1I-2), and this expec-
tation is really validated as is discussed below. For
the reference we note that the deformation equation
(D) (J =TI-1, 11-2) for ¢ = 2'/2T;,"/*y (in the
case of (Li.1)m) and ¢ = Trﬁl/le (in the case of
(L11-2)m; for the sake of simplicity we assume ¢; =
0(1<j<m-—1)in (1.3.9) of [KKNT]. To avoid
some degeneracy we also assume ¢ # 0 in (1.2.1)
(resp., 6 # 0 in (1.3.1)) of [KKNT]) is given respec-
tively with

2gx
1.5 : = =
(1.5) ALm) = 7o
and
1.6 = —
( ) a(11-2,m) 2,

where ¢ is a non-zero constant and T, is a polyno-
mial of degree m in = whose coefficients are given in
terms of (O-parameter) solutions of (Pj)n,.

2. Regularity of Soqq near = b o(t).
In this section we omit the suffix (J,m) of Q(jm)
and a(j ). Let S* respectively denote the solution
of the Riccati equation associated with (SLj)m, i.e.,

oS+

2.1 SE? 4 — =9?

(2.1) (5% + - —=1@,

that begins with +7+y/Q. Then S,q4q is, by definition,
1

(2.2) Sodd = 5(S+ —S7).

We note that this definition of S,qq is different from
that used in [KT2]; one important point is that Sydq
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thus defined may contain a term whose degree in 7
is even. Although we do not discuss the details here,
Sodd thus defined is free from even degree terms for
J =1, just like Spqq in [KT2], but not for J = II-1
or I1-2. As is shown in [AKT, §2], we can verify

0Soaa O

(2.3) 5~ By “Sodd)
for Soaq thus defined. Using (2.3), we can prove the
following

Theorem 2.1. The series Soqq and aSe,qq are

holomorphic on a neighborhood of x = b;o(t) (1 <
j < m) in the sense that each of their coefficients
as formal power series in n~' is holomorphic on a
neighborhood of x = bj o(t).

3. Reduction of b;(t,n) (j = 1,---,m)
to a O-parameter solution of (Pr);. Lett =171
be a turning point of the first kind of (Py), (J =I,
II-1, TI-2) in the sense of [KKNT]. (We note that
every turning point is of the first kind if m = 1, i.e.,
for the traditional Painlevé equations.) Let us fur-
ther assume that 7 is simple in the sense of [AKKT)]
(with using a local parameter of the Riemann sur-
face R of the O-parameter solution as independent
variable. Note that, as is explained in [KKNT] and
[NT], the Stokes geometry of (Pj),, lies on R and
that a turning point of the first kind is in general
a square-root type branch point of R.) Then there
exist a double turning point b; ¢(¢) and a simple turn-
ing point a(t) of (SLj )., which merge at 7, and there
exists an analytic function v;(¢) for which

t bj,o(t)
(3.1) / vj(s)ds = 2/ \/ Qim0 t)dw

(®)

holds. (See [KKNT, §2] for the proof.) Note that a
Stokes curve of (Pj),, that emanates from 7 is, by
definition, given by

¢
Im/ vi(s)ds = 0.

It follows from (3.1) that

bj,o(t)
Im 1/Q(J7m)70(x,t)dx =0

a(t)
holds if ¢ lies in the Stokes curve of (Py),,. Otherwise
stated, if ¢ lies in the Stokes curve of (Pj),, the dou-
ble turning point b; ¢(¢) and a simple turning point
a(t) of (SLy)m are connected by a Stokes segment
v. Using Theorem 2.1, we can prove the following

(3.2)

(3.3)

Proposition 3.1 in this geometrical setting:
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Proposition 3.1. Let 7 be a simple turning
point of the first kind of (Py)m (J =1, 1I-1, 11-2),
and let o (# 7) be a point that is sufficiently close
to T and that lies in a Stokes curve of (Pj)m which
emanates from 1. Then there exist a meighborhood
Q of the above mentioned Stokes segment vy, a neigh-
borhood w of o and holomorphic functions Z;(x,t)
(=0,1,2,---) on Q x w and t;(t) (j =0,1,2,---)
on w so that the following relations may hold:

(i) The function to(t) satisfies

O ' (s)ds = / iz |

where \g = \/—5/6, and, in particular, dty/dt # 0
holds on w, if w is chosen sufficiently small.

(ﬁ) .f?o(bjp(t),t) = )\Q(fo(t)) and fo(a(t),t) =
—22(fo(t)-

(iii) 0Zo/0x #0 on Q X w.

(iv) Letting &(x,t,n) and t(t,n) respectively de-
note 5o Zj(x, )7 and ijofj(t)n_j, we find
the following relation:

(3.5)

F=to(t)’

07 \? - -
Q(J,m)(xatan) = (%) Q(‘i(xatan)at(tan)an)

1
=30 Ha ()il

where {Z;x} denotes the Schwarzian derivative and
Q(Z,1) is the potential of the Schrédinger equation
(SLy) in [KT2], i.e.,

(3.6)  Q(&,1) = 43> + 267 + v? — 4X} — 2t\
-1 141 _9 3
- Wi S AT S WEL
with
(3.7)

Ai(t,n) being a O-parameter solution of (Pp),
ice., A\, = n2(6A} +1), and vy being n~'d\;/di.

Using the transformations Z(x,t,7n) and #(t,n)
constructed above, we can show

(3.8)
07T ~ -
S(sm),odd(®,t) = <%> Stodd(Z(z,t,m), t(t,n),n).
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This relation and Theorem 2.1 entail the following
Theorem 3.1. In the situation of Proposi-

tion 3.1, we have

(39) 50(%7277) |3L‘=bj(t,n): )‘I(f(tan)an)'
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