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Abstract:

We construct for each integer n (> 3), infinitely many number fields of degree

n each of which has an unramified quadratic extension with a power integral basis but no normal

integral basis.
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1. Introduction. Let L/K be a finite exten-
sion of an algebraic number field K, and Oy, (resp.
Of) the ring of integers of L (resp. K). One says
that L/K has a power integral basis (PIB for short)
when O, = Ogkla] for some o € Op,. If L/K is Ga-
lois, it has a normall integral basis (NIB for short)
when Oy, is free of rank one over the group ring
Ok[Gal(L/K)]. Let p be a prime number. Assume
that K contains a primitive p-th root ¢, of unity and
that L/K is an unramified cyclic extension of degree
p. Here, L/K is “unramified” when it is unramified
at all finite prime divisors. Then, it is known that
L/K has a PIB if it has a NIB (see Childs [1] and the
author [3]). On the other hand, the converse does not
hold in general. Actually, we give in [4] some exam-
ples of real quadratic fields which has an unramified
quadratic extension with PIB but no NIB. In this
note, we prove that for each integer n > 3, there
exist infinitely many number fields of degree n each
of which has an unramified quadratic extension with
PIB but no NIB. We give a more precise statement
in the next section after introducing some notation.

2. Theorem. Let K be a number field and
E = FEg the group of units of K. We denote
by H(K) the subgroup of K*/(K*)? consisting of
classes [o] (a € K*) such that K (a'/?)/K is unram-
ified (at all finite prime divisors). We put

E(K) = H(K) NE(K*)?*/(K*)?,
N(K) = {le] € B(K*)?/(K*)* |

e€E, e=1 mod4}.
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It is well known (cf. Washington [7, Exercises 9.2,
9.3]) that for a unit € € F, the extension K (¢'/?)/K
is unramified if and only if

2

E=u mod 4 for some u € Og.

Therefore, it follows that
N(K) € E(K) € H(K).

In [1], Childs proved that for [a] € H(K), the un-
ramified quadratic extension K (a'/?)/K has a NIB
if and only if [a] € N(K). F. Kawamoto, N.
Suwa and the author independently proved that for
[a] € H(K), K(a'/?)/K has a PIB if and only if
[a] € E(K). For a proof of this assertion, see [3].
We say that a finite extension L/K is strongly un-
ramified when it is unramified at all prime divisors
including the infinite ones. Let H(K) be the sub-
group of H(K) consisting of classes [a] € H(K) such
that K (a'/?)/K is strongly unramified, and

E(K) := E(K) NH(K),
N(K) :=N(K)NH(K).

The groups defined above are naturally regarded as
vector spaces over Fo = Z/2Z. For a vector space
M over Fo, dim(M) denotes its dimension.

We prove the following;:

Theorem. Let n, ry and ro be integers with
n=r+2rp andn >3, ry > 1, ro > 1. Then,
there exist infinitely many number fields K of degree
n each of which has exactly ri real prime divisors
and satisfies the inequalities

O {dim(g(K)/ﬁf(K)) >1,

dim(N(K)) > [r1/2] + 2 — 1.
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Here, [x] denotes the largest integer not exceeding x.

Let K be a number field satisfying the condi-
tions in the Theorem. Then, by the results in [1]
and [3] recalled above, K has a strongly unrami-
fied quadratic extension with PIB but no NIB, and
[r1/2] + ro — 1 strongly unramified quadratic exten-
sions with NIB which are linearly independent over
K.

Remark 1. For a number field K satisfying
the conditions in the Theorem, the 2-rank of the
ideal class group (in the usual sense) in larger than
or equal to d(r1,r2) = [r1/2] + ro. Ishida [5], the
author [2] and Nakano [6, Theorem 2] already con-
structed infinitely many number fields of degree n for
which the 2-rank of the ideal class group is larger
than (ry,72), without imposing any condition on
the structure of the rings of integers of the associ-
ated unramified quadratic extensions.

Remark 2. In [4, Section 3], we have con-
structed infinitely many sextic fields K with (3 € K*
each of which has an unramified cubic cyclic exten-
sion with PIB but no NIB.

3. Proof of the Theorem. We fix integers
n, r1 and ro with n = riy +2rg and n > 3, 11 >
1, 79 > 1. We deal with a number field defined by a
polynomial of the form

1 To
FX) =TI —a) [T =5, X +¢5) -2
i=1 j=1
for some integers a;, b;, c;. We assume that these in-
tegers and f(X) satisfy the following five conditions.
The first two of them are as follows.

(Cl) aiEOm0d8(1§i§r1), bjECjE
4 mod 8 (1<j<ry).

(C2) f(X) hasr; real roots and 2ry imaginary
roots.

We can choose a;, bj, ¢; satisfying (C2) by imposing
the condition:

(C3) a; < a;y1 with a;+1 — a; sufficiently large
(1<i<r —1),and b7 —4c; <0 (1 <j <rg).

We choose and fix 71 + 79 — 1 prime numbers ¢; (2 <
I < r1)and py (1 < J < rg) different from each
other such that

(2) ¢=5mod8 and,
(3) 2n # 1 mod /¢
with ¢ = {7, p;j. The last two assumptions on

ai, b;, c¢j are as follows.
(C4) For each I (2 < I < 1), the following
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congruences hold:

ar =-1 mod ¥y,
a; 0 modé; (1§i§T1,i7£I),
bj=c¢; =0 mod/{r (1<j<ry).
(C5) For each J (1 < J < ry), the following
congruences hold:

a; =0 modp; (1<i<r),
by=-1 modpy,
b; =0 modp; 1<j<rqy, j#J),
¢;=0 modpy (1<j<r).
By (C1), f(X) is an Eisenstein polynomial, and

hence is irreducible. Let 6 be a root of f(X), and
K = Q(6). We prove the following:

Proposition. Under the above setting, K sat-
isfies the conditions in the Theorem.

It is clear from (C2) that K has exactly r real
primes divisors. So, we prove that K satisfies the
inequalities (1) of the Theorem.

By (C1), the prime number 2 is totally ramified
in K; (2) = P™. Further, it also follows from (C1)
and f(0) = 0 that

(0 —a;)=P and (6% —b;0+c;)="P>

Therefore, the following r = r; + ro — 1 elements are
units of K:
0—(11' 92—bj9+6j

BT a)

with 2 < ¢ <7y and 1 < j < ry. For an element
x € K*, we say that x is totally positive and write
x > 0 when z is positive at all real prime divisors.
It follows from the last condition in (C3) that

€ =
% 9_(117

(4) n; >0 (1 <7 <ry).
It also follows from (C3) that
€2k €241 > 0(1 <k< (7“1 — 1)/2)7
--- when rq is odd,

€2>0, eap_1€2 >0 (2 <k <1/2),
--- when rq is even.

(5)

This is shown as follows. Assume that r; is odd.
Let 61, 02,...,0,, be the r; real roots of f(X) with
0; < 0;11. From the conditions in (C3), we see that

-1
Oa < agp, < G2p41 < 92k+1<1 <k< r12 )

Then, we easily see that 6 — ag;, and 0 — agg41 have
the same signatures. The assertion (5) follows from
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this when 7, is odd. When ry is even, it is shown in
a similar way.

We see from (C1) that

e1=1 modd4,
(6) nj =(1—-2/6)> mod 4,
n; Z1 mod4, nny =1 mod4

with2 <:<ryand1<j7, 5 <rs.

To prove the Proposition, we have to show the
following:

Lemma. A basis of the vector space E/E? over
Fsy of dimension r +1 =ry 4+ ro is given by

{1, [e], ] 12<i<r, 1 <5<}

Proof. It suffices to show that r + 1 elements
[—1], [&], [n;] are linearly independent over Fy. As-
sume that

T1 T2
(7) (-0 L e TP € B2
i=2 =1

with e;, f; € {0,1}. First, let I be an integer with
2 < T <y, and show e; = 0. By (C4), we have

fX)=X"4+X""1 -2 mod/;.

In particular, f(1) = 0 mod ¢;. Further, we see
from (3) that 1 mod ¢; is not a multiple root of
f(X) mod ¢;. Hence, there exists a prime ideal L
of K over ¢; which is of degree one and contains §—1.
Then, reducing the relation (7) modulo L;, we see
that (—1)°12°7  mod /; is a square in F from (C4)
and the definition of ¢;, n;. Here, Fy = Z/{Z for a
prime number ¢. Therefore, we obtain ey = 0 by (2)
and the supplementary laws for the quadratic residue
symbols. Next, we can show f; =0 (1 < J < ry)
is a similar way using the prime number p; and the
condition (C5) in place of ¢; and (C4). Finally, we
obtain e; = 0 from (—1)“ € E? since r; > 1. [

Proof of the Proposition. It suffices to
show that the number field K satisfies the inequali-
ties (1) in the Theorem. First, we deal with the case
where r1 is odd. By (4), (5) and (6), the classes of
the units

Tl—l

€2k€2k+1, N1T;j (1 <k< ,2<5< 7”2)

are elements of /\N/(K) Then, by the Lemma, K
satisfies the second inequality in (1). By (4) and
(6), [m] € E(K). Assume that [m] € N(K). This
implies that 7, = 6> mod 4 for some § € E. By the
Lemma, the subgroup of E generated by the r 4+ 1
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units —1, ¢, n; is of finite index, and the index is
odd. Therefore, we obtain

nt = (ﬁe? ﬁnjj)2 mod 4
=2 j=1

for some odd integer e and some integers e;, f;. How-
ever, this is impossible because of (6) since e is odd.
Therefore, [n1] ¢ N(K), and hence K satisfies the
first inequality in (1). Thus, the assertion of the
Proposition is proved when r; is odd. When r; is
even, we can prove it in a similar wary. ]

Proof of the Theorem. Assume that we
have number fields Ki,..., K, satisfying the con-
ditions of the Theorem. Let ¢ be a prime number
which splits completely in the composite K --- K
with £ # ¢; and ¢ # py. Let a be an integer such
that @ mod ¢ is not a square in F,. Choose
integers a;, b;, ¢; satisfying (C1),..., (C5) and the
following congruences:

a;=0 mod/ (1<i<ry),

bj=¢; =0 modl (1<j<ry—1),
by, = =20~ Y/2 ¢ =_o modl,

- when rq is odd,
by, =0, ¢, =20~ ""2/2 _ ¢ mod ¢,

- when r; is even.

Let 0 be a root of the polynomial f(X) for the above
a;, bj, ¢j, and Koy1 = Q(f). By the Proposition,
K1 satisfies the conditions of the Theorem. We
easily see that the remainder in the division of X™
by X2 —a equals o™~ 1/2X or /2 according as m
is odd or even. From this and the above congruences,
we see that

F(X) = (X? — a)g(X)

for some g(X) € Z[X].
completely in K1, and hence K41 # Ki,...

mod ¢

Therefore, ¢ does not split
, Ks.
L]
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