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1. Introduction. In the preceding paper [1],
we constructed a group of units with full rank for
the ray class field k¢ of Q(exp(27i/5)) modulo 6 us-
ing special values of Siegel modular functions and
circular units. Our work was based on Shimura’s
reciprocity law [3] which describes explicitly the Ga-
lois action on the special values of theta functions
and numerical computation. In this paper, we con-
struct certain units of the ray class field kg of
Q(exp(27i/5)) modulo 18.

2. Siegel modular functions. We argue in
a situation similar to [1]. So we explain notations
briefly. We denote as usual by Z, Q, R and C by
the ring of rational integers, the field of rational num-
bers, real numbers and complex numbers, respec-
tively. For a positive integer n, let I, be the unit
matrix of dimension n and ¢, = exp(2wi/n). Let
&2 be the set of all complex symmetric matrices of
degree 2 with positive definite imaginary parts. For

u€ C?, z€ Gy and r,s € R?, put as usual
O(u, z;1, 8)
1,
(2 x+71)z x+r)+t(x+r)(u—|—s)),
r€Z2

where e(§) = exp(2mi€) for £ € C. Let N be a
positive integer. If we define

20(0, z; 1, s)

(I’(Z§T75;T1,51): m

for r,s,r1,81 € (1/N)Z?, then ®(z;7,s;71,51) is a
Siegel modular function of level 2N?2.
Let 't = S5p(2,Z) = {a € GL4(Z) | 'aJa = J},
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where

(0~
J-(IQ 0).

We let every element

o AB

- \CD
act on &y by a(z) = (Az+B)(Cz+D)~! for 2 € Gs.
If o is a matrix in My(Z) such that ‘aJa = vJ

and det(a) = v? with positive integer v prime to
2N?, then there exists a matrix 8, in I'; with

a= ({)2 U(-;z) Bo (mod 2N?).
We let « act on ®(z;r,s;r1,s1) by ®*(z;7, 8571, 81)
= ®(84(2); r,vs; 11,vs1). Then &% is also a Siegel
modular function of level 2N2.

In what follows, we fix ( = (5 and &k = Q(().
Let o be the element of the Galois group G(k/Q)
such that ¢7 = (2 and define the endomorphism ¢
of k* by ¢(a) = a'*°” for a € k*. Furthermore put

ZOZ(C”C“ <3>1<—< 44)

¢+¢ ¢ - ¢
_1(2+c—<3—2§4 2—§+c2—2<3)
C5\2-C+¢ 200 (+2¢2 -2 -¢)

We note that zy is a CM-point associated to a Fer-
mat curve 42 = 1 — 2% For an element w in the
integer ring Oy of k, let R(w) € My(Z) be the
regular representation of w with respect to the ba-
sis {—C,C%C2 4+ ¢4,¢*). Then, R(p(w)z0 = 20,
'R(p()JR(p(w)) = vJ and det R(p(w)) = o7,
where v = Ny, /q(w).

3. Structure of the Galois group. For a
positive integer N, we denote by kx the ray class
field of £ modulo N. We explain the structure of
the Galois group G(k1s/k) which is needed for our
argument. For a positive integer m, we put S,

{a € kXla =1 (mod m)} and S,, = {(a)|a € Si},
where (a) is the principal ideal of k generated by a.
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Let U be the unit group of k. Then we have

G(kig/ke) = 56/518 >~ SsU/S18U

= S6/518(Se NU).

Weputw; =14+6=1+6(—C—C—— (%), wy =
14+6(C—¢*Y), w3 = 146(¢°—¢%), wa = 14+6(¢—¢*
G+ =1+2V5and H = S13(S¢NU). Then it is
easy to show that Sg/H = (w1 H,wo H,ws H, ws H) =
(Z/3Z)*. Futhermore, if we define an endomorphism
@ of S¢/H by ¢(aH) = ¢(a)H, then Kerp = wsH.
Let K be the intermediate field of k15/k correspond-
ing to Kerp. Then K is imaginary Galois exten-
sion of Q with [K : Q] = 1080 and G(K/k) =
(Z/10Z) x (Z/3Z)3. Let

:((?i/z)) and m:(k(lji/)k) =123

be Artin symbols. We extend 7 to ki3 and keep the
notation. Then G(K/k) = (r,m1,12,713). We also
extend o to kg and keep the notation. Then the
action of o to G(K/k) is given by

-1 —1 2 -1
0 "o =171, 0 120 =13, 0 730 =12

-1 7

and o 'to=171".

Now, let r,s,71,s1 € (1/18)Z2.
known that ®(z;r,

Then it is
8;71,81) € kg.1g2 and

k2-182/k)

‘1)(20;7“78;7“1781)( @) = RO (50 sy 51)

by Shimura’s reciprocity law for w € O which
is prime to 18 (cf. [3]). Moreover we know that
®(z9;7,5;0,0) is an algebraic integer and ®(zg; r, s;
r1,51)3¢ is contained in kg by [2]. The actions of 7
and n; for ®(zg;7, s;71, 1) are given by

3 0-1 1
2 2 0-1
2 1 1 4
1
_ ~1
= 01112 1544 44 —59
4459 59 T4
(mod 2 - 9?),
29 7212 T2
84 31 -72 12
Rlpw2) = o4 1o _41 60|

—12 12 72 43
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43 —60 —12 -84

~72-29 60 —12
Rlelws)) = g 19 31 72|

12 12 —84 —41
R(p(wy)) = 7214 and R(p(wy)) = —17914,

which implies that ®(zo;7,s;0,0)3¢
integer of K.

is an algebraic

4. Norm computation. We explain how to
compute Ny /q®(z0;7,5;0,0)% for r,s € (1/18)Z.
Let wp = ¢+ 2 and Q = {wi’wi'ws?ws® | 0 < gp <
9,0 < eq,eq,e3 < 2}. We first note that

IT  ®(z0;7,50,0°%
pEG(K/k)

= H @) (24: 7, 5,0,0)%6
weN

Nic/p® (2057, 8;0,0)% =

and hence
NK/Q(\/E)@(ZO; r,5;0,0)%

2
= H ‘@R(“’(w))(zo;T,s;O,O)%‘ .
weN

Now, we can write

‘@R(“"(“))(zo;r, 8;0,0)‘ = ’q)(zo;r’,s';r'l,sll)

explicitly with 7/, s’ € (1/18)Z2 and 7}, s} € (1/2)Z?
by transformation formula for theta series. Since
®(z0;7,5;0,0)3 is an algebraic integer of kig and
since the absolute value of a conjugate of D(zo; 7, 55
0,0)3¢ over Q is a form of |®(z;7/,s";7",5")3¢| for
some 7/, s’ € (1/18)Z* and 7", s" (1/2)Z27 we can
determine Ng/q®(z0;7,5;0, 0)36 with some luck.
Example 4.1. Let

(418 (3/18
- (5/18> and s = <1/18> '
‘We note that
H @R(W(w))(zo;r,s;O,O)Q

weN

is contained in k. So we computed the approximate
values of

(1) [T 2% (z0;r, 5:0,0)
weNR
X H |<I>R(“’(“’))(ZO;T/,5’;r”,s”)|2
weN
for all 7/,s’ € (1/18)Z? and r",s" € (1/2)Z* and

found that (24323'4)2 is the only possible integral
value for (1). Furthermore, there are 270 pairs of
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(r',s', 7", 8") such that (1) is close to (2432314)2 and
all the pairs are derived from one by the action of
G(K/k). Hence we can conclude that

Nijq®(z0; 7, 50,0)%0 = (2132314)36
and

(2) |®(2037,5;0,0)%|

o () (102) () (2))”
for some extension of o to . Similarly we have
(o (1) (1) (6)- ()
= Nijawn ® <ZO? (?;iz) ’ (%S) ; <8> ’ (8)>36
Moo (15) (120) (12) (2)

(2432314)36.

5. Construction of units. We denote by
FEx the unit group of K. It is easy to show that 2
and 3 inert in k/Q, 3 is totally ramified in K/k and
the decomposition group of 2 for K/k is the cyclic
group generated by 72. Hence we see that

(I)(Zo; @ﬁZ) ’ (%12) ; <8) , (8))36(1—7%

is contained in Fx and hence

ar=2( 203\ 508) \1/18) o) Lo o
(o (o) (Tas) - (0)- )

. . . 2 .
is also contained in Fx because (35 = (36. Similarly
we have one more unit

com (e (1) (199, 0))

of K. We are interested in the subgroups of Fx
generated by e; with Galois actions. Let

0 S €0 S 7)
H = {07050 | 0 < e, ez ez <2,
e1 +es S 3

be the subset of G(K/k) and put E; = (¢! | p € H)
(i = 1,2). The cardinality of H is 192. We determine
the rank of FE;.

Theorem 5.1. We have ranky E| = ranky Fy
=192.

Proof . The actions of 7 and 7; for €1 are de-
termined explicitly by Shimura’s reciprocity law and
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that of o is given by (2) for suitable extension of o.
So we can construct the 192 x 540 matrix

(3) (log [u]),

where u runs over £ (p € H) and g is of the form
alp (0 < i < 1,p € G(K/k)). We verified nu-
merically that the rank of (3) is 192. So we have
rankyz £ = 192. The same argument is applicable
to Eg. D

Next we construct a subgroup of Ex of larger
rank by composing F; and F,. Let

OSBOS’?a

OS@]Sl,
0<eg,e3<2

€1,,62,,€3

H' = TN N5 s
be the subset of H and put E12 = (7', 5% | p1,p2 €
H'’). We note that the cardinality of H' is 144.
Furthermore we define a group of cyclotomic units
Es=(1-¢5]i=1,2,4,7,811,13,14,16,17,19).
The following is the main result in this paper.

Theorem 5.2. We have rankg F13FE3 = 299.

Proof . The determination of rankz EisF3 is
slightly difficult. We can consider

= (110 () (1) ()

for suitable extension of ¢. But we can only assert
that

[e3]=| (20 3/18 ) \1/18 ) \1/2) \1/2 o
0/18) [1/18\ (1/2\ [(1/2\\' " ”*

for some p € G(K/k) and (f5 = (35, (s, CiF, €35, (43
or (3. We need to calculate the rank of 299 x 540
matrix similar to (3). Let

8 8 -9 9 2 2 8,2

H,,_ T,0T ,T",0T 7"7170-771a7—"717
- 8,2 .92 9,2 702,22 [ °

OT M, T 1,071, 0T 1113713

We calculated numerically the determinants of mi-
nor matrices of dimension 299 consisting of columns
associated to H' UoH’' U H” for all possible values
of € and (75 and verified that the determinants are
non-zero for all cases. Hence we fortunately conclude
that rankz F1oF3 = 299. ]

The computations were executed on a 64-bit
work station DEC Alpha 500/333. A custom pro-
gram by C and assembly language was written for
calculating approximate values of theta functions
with high precision. Specifying independent units
and computing ranks of matrices were handled by



No. 10] Unit group generated by Siegel modular functions 197

TC which is an interpreter of multi-precision C lan- functions (to appear in Math. Comp.).

guage developed by one of the authors. [ 2] K.Komatsu: Construction of normal basis by spe-
cial values of Siegel modular functions (to appear
in Proc. Amer. Math. Soc.).
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