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On a unit group generated by special values of Siegel modular functions. II

By Takashi Fukuda, ∗) Takeshi Itoh, ∗∗) and Keiichi Komatsu ∗∗)
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1. Introduction. In the preceding paper [1],
we constructed a group of units with full rank for
the ray class field k6 of Q(exp(2πi/5)) modulo 6 us-
ing special values of Siegel modular functions and
circular units. Our work was based on Shimura’s
reciprocity law [3] which describes explicitly the Ga-
lois action on the special values of theta functions
and numerical computation. In this paper, we con-
struct certain units of the ray class field k18 of
Q(exp(2πi/5)) modulo 18.

2. Siegel modular functions. We argue in
a situation similar to [1]. So we explain notations
briefly. We denote as usual by Z, Q, R and C by
the ring of rational integers, the field of rational num-
bers, real numbers and complex numbers, respec-
tively. For a positive integer n, let In be the unit
matrix of dimension n and ζn = exp(2πi/n). Let
S2 be the set of all complex symmetric matrices of
degree 2 with positive definite imaginary parts. For
u ∈ C2, z ∈ S2 and r, s ∈ R2, put as usual

Θ(u, z; r, s)

=
∑

x∈Z2

e

(
1
2

t(x + r)z(x + r) + t(x + r)(u + s)
)

,

where e(ξ) = exp(2πiξ) for ξ ∈ C. Let N be a
positive integer. If we define

Φ(z; r, s; r1, s1) =
2Θ(0, z; r, s)
Θ(0, z; r1, s1)

for r, s, r1, s1 ∈ (1/N)Z2, then Φ(z; r, s; r1, s1) is a
Siegel modular function of level 2N2.

Let Γ1 = Sp(2,Z) = {α ∈ GL4(Z) | tαJα = J},
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where

J =
(

0 −I2

I2 0

)
.

We let every element

α =
(

A B

C D

)

act on S2 by α(z) = (Az+B)(Cz+D)−1 for z ∈ S2.
If α is a matrix in M4(Z) such that tαJα = vJ

and det(α) = v2 with positive integer v prime to
2N2, then there exists a matrix βα in Γ1 with

α ≡
(

I2 0
0 vI2

)
βα (mod 2N2).

We let α act on Φ(z; r, s; r1, s1) by Φα(z; r, s; r1, s1)
= Φ(βα(z) ; r, vs ; r1, vs1). Then Φα is also a Siegel
modular function of level 2N2.

In what follows, we fix ζ = ζ5 and k = Q(ζ).
Let σ be the element of the Galois group G(k/Q)
such that ζσ = ζ2 and define the endomorphism ϕ

of k× by ϕ(a) = a1+σ3
for a ∈ k×. Furthermore put

z0 =
(

ζ2 + ζ4 ζ3

ζ4 + ζ3 ζ

)−1 (−ζ ζ4

−ζ2 ζ3

)

=
1
5

(
2 + ζ − ζ3 − 2ζ4 2− ζ + ζ2 − 2ζ3

2− ζ + ζ2 − 2ζ3 ζ + 2ζ2 − 2ζ3 − ζ4

)
.

We note that z0 is a CM-point associated to a Fer-
mat curve y2 = 1 − x5. For an element ω in the
integer ring Ok of k, let R(ω) ∈ M4(Z) be the
regular representation of ω with respect to the ba-
sis {−ζ, ζ4, ζ2 + ζ4, ζ3}. Then, R(ϕ(ω))z0 = z0,
tR(ϕ(ω))JR(ϕ(ω)) = vJ and det R(ϕ(ω)) = v2,
where v = Nk/Q(ω).

3. Structure of the Galois group. For a
positive integer N , we denote by kN the ray class
field of k modulo N . We explain the structure of
the Galois group G(k18/k) which is needed for our
argument. For a positive integer m, we put Sm =
{a ∈ k×|a ≡ 1 (mod m)} and S̃m = {(a)|a ∈ Sm},
where (a) is the principal ideal of k generated by a.
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Let U be the unit group of k. Then we have

G(k18/k6) ∼= S̃6/S̃18
∼= S6U/S18U

∼= S6/S18(S6 ∩ U).

We put ω1 = 1 + 6 = 1 + 6(−ζ − ζ2 − ζ3 − ζ4), ω2 =
1+6(ζ−ζ4), ω3 = 1+6(ζ2−ζ3), ω4 = 1+6(ζ−ζ2−
ζ3 + ζ4) = 1 + 2

√
5 and H = S18(S6 ∩U). Then it is

easy to show that S6/H = 〈ω1H,ω2H,ω3H, ω4H〉 ∼=
(Z/3Z)4. Futhermore, if we define an endomorphism
ϕ̃ of S6/H by ϕ̃(aH) = ϕ(a)H, then Ker ϕ = ω4H.
Let K be the intermediate field of k18/k correspond-
ing to Ker ϕ. Then K is imaginary Galois exten-
sion of Q with [K : Q] = 1080 and G(K/k) ∼=
(Z/10Z)× (Z/3Z)3. Let

τ =
(

k6/k

(ζ + 2)

)
and ηi =

(
k18/k

(ωi)

)
(i = 1, 2, 3)

be Artin symbols. We extend τ to k18 and keep the
notation. Then G(K/k) = 〈τ, η1, η2, η3〉. We also
extend σ to k18 and keep the notation. Then the
action of σ to G(K/k) is given by

σ−1η1σ = η1, σ−1η2σ = η2
3 , σ−1η3σ = η2

and σ−1τσ = τ7.

Now, let r, s, r1, s1 ∈ (1/18)Z2. Then it is
known that Φ(z0; r, s; r1, s1) ∈ k2·182 and

Φ(z0; r, s; r1, s1)
(

k2·182/k

(ω)

)
= ΦR(ϕ(ω))(z0; r, s; r1, s1)

by Shimura’s reciprocity law for ω ∈ Ok which
is prime to 18 (cf. [3]). Moreover we know that
Φ(z0; r, s; 0, 0) is an algebraic integer and Φ(z0; r, s;
r1, s1)36 is contained in k18 by [2]. The actions of τ

and ηi for Φ(z0; r, s; r1, s1) are given by

R(ϕ(ζ + 2)) =




3 0 −1 1
2 2 0 −1
3 −2 2 −1

−2 1 1 4




≡
(

I2 0
0 11I2

)



3 0 −1 1
2 2 0 −1

15 44 −44 −59
44 59 59 74




(mod 2 · 92),

R(ϕ(ω2)) =




−29 72 −12 72
84 31 −72 −12
24 −12 −41 60

−12 12 72 43


 ,

R(ϕ(ω3)) =




43 −60 −12 −84
−72 −29 60 −12

0 12 31 −72
12 12 −84 −41


 ,

R(ϕ(ω1)) = 72I4 and R(ϕ(ω4)) = −179I4,

which implies that Φ(z0; r, s; 0, 0)36 is an algebraic
integer of K.

4. Norm computation. We explain how to
compute NK/QΦ(z0; r, s; 0, 0)36 for r, s ∈ (1/18)Z2.
Let ω0 = ζ + 2 and Ω = {ωe0

0 ωe1
1 ωe2

2 ωe3
3 | 0 ≤ e0 ≤

9, 0 ≤ e1, e2, e3 ≤ 2}. We first note that

NK/kΦ(z0; r, s; 0, 0)36 =
∏

ρ∈G(K/k)

Φ(z0; r, s; 0, 0)36ρ

=
∏

ω∈Ω

ΦR(ϕ(ω))(z0; r, s; 0, 0)36

and hence

NK/Q(
√

5)Φ(z0; r, s; 0, 0)36

=
∏

ω∈Ω

∣∣∣ΦR(ϕ(ω))(z0; r, s; 0, 0)36
∣∣∣
2

.

Now, we can write
∣∣∣ΦR(ϕ(ω))(z0; r, s; 0, 0)

∣∣∣ =
∣∣∣Φ(z0; r′, s′; r′1, s

′
1)

∣∣∣
explicitly with r′, s′ ∈ (1/18)Z2 and r′1, s

′
1 ∈ (1/2)Z2

by transformation formula for theta series. Since
Φ(z0; r, s; 0, 0)36 is an algebraic integer of k18 and
since the absolute value of a conjugate of Φ(z0; r, s;
0, 0)36 over Q is a form of |Φ(z0; r′, s′; r′′, s′′)36| for
some r′, s′ ∈ (1/18)Z2 and r′′, s′′ ∈ (1/2)Z2, we can
determine NK/QΦ(z0; r, s; 0, 0)36 with some luck.

Example 4.1. Let

r =
(

4/18
5/18

)
and s =

(
3/18
1/18

)
.

We note that
∏

ω∈Ω

ΦR(ϕ(ω))(z0; r, s; 0, 0)2

is contained in k. So we computed the approximate
values of

∏

ω∈Ω

∣∣ΦR(ϕ(ω))(z0; r, s; 0, 0)
∣∣2(1)

×
∏

ω∈Ω

∣∣ΦR(ϕ(ω))(z0; r′, s′; r′′, s′′)
∣∣2

for all r′, s′ ∈ (1/18)Z2 and r′′, s′′ ∈ (1/2)Z2 and
found that (2432314)2 is the only possible integral
value for (1). Furthermore, there are 270 pairs of
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(r′, s′, r′′, s′′) such that (1) is close to (2432314)2 and
all the pairs are derived from one by the action of
G(K/k). Hence we can conclude that

NK/QΦ(z0; r, s; 0, 0)36 = (2432314)36

and
∣∣Φ(z0; r, s; 0, 0)36σ

∣∣(2)

=
∣∣∣∣Φ

(
z0;

(
16/18
1/18

)
,

(
1/18
1/18

)
;
(

1/2
1/2

)
,

(
1/2
1/2

))36∣∣∣∣
for some extension of σ to K. Similarly we have

NK/QΦ
(

z0;
(

8/18
1/18

)
,

(
1/18
1/18

)
;
(

0
0

)
,

(
0
0

))36

= NK/Q(
√

5)Φ
(

z0;
(

8/18
1/18

)
,

(
1/18
1/18

)
;
(

0
0

)
,

(
0
0

))36

NK/Q(
√

5)Φ
(
z0;

(
0/18
3/18

)
,

(
1/18
1/18

)
;
(

1/2
1/2

)
,

(
1/2
1/2

))36

= (2432314)36.

5. Construction of units. We denote by
EK the unit group of K. It is easy to show that 2
and 3 inert in k/Q, 3 is totally ramified in K/k and
the decomposition group of 2 for K/k is the cyclic
group generated by τ2. Hence we see that

Φ
(

z0;
(

4/18
5/18

)
,

(
3/18
1/18

)
;
(

0
0

)
,

(
0
0

))36(1−τ2)

is contained in EK and hence

ε1 = Φ
(

z0;
(

4/18
5/18

)
,

(
3/18
1/18

)
;
(

0
0

)
,

(
0
0

))1−τ2

is also contained in EK because ζτ2

36 = ζ36. Similarly
we have one more unit

ε2 = Φ
(

z0;
(

8/18
1/18

)
,

(
1/18
1/18

)
;
(

0
0

)
,

(
0
0

))1−τ2

of K. We are interested in the subgroups of EK

generated by εi with Galois actions. Let

H =



τ e0ηe1

1 ηe2
2 ηe3

3

∣∣∣∣∣
0 ≤ e0 ≤ 7,

0 ≤ e1, e2, e3 ≤ 2,

e1 + e2 ≤ 3





be the subset of G(K/k) and put Ei = 〈ερ
i | ρ ∈ H〉

(i = 1, 2). The cardinality of H is 192. We determine
the rank of Ei.

Theorem 5.1. We have rankZ E1 = rankZ E2

= 192.
Proof . The actions of τ and ηi for ε1 are de-

termined explicitly by Shimura’s reciprocity law and

that of σ is given by (2) for suitable extension of σ.
So we can construct the 192× 540 matrix

(log |ug|),(3)

where u runs over ερ
1 (ρ ∈ H) and g is of the form

σiρ (0 ≤ i ≤ 1, ρ ∈ G(K/k)). We verified nu-
merically that the rank of (3) is 192. So we have
rankZ E1 = 192. The same argument is applicable
to E2.

Next we construct a subgroup of EK of larger
rank by composing E1 and E2. Let

H ′ =



τ e0ηe1

1 ηe2
2 ηe3

3

∣∣∣∣∣
0 ≤ e0 ≤ 7,

0 ≤ e1 ≤ 1,

0 ≤ e2, e3 ≤ 2





be the subset of H and put E12 = 〈ερ1
1 , ερ2

2 | ρ1, ρ2 ∈
H ′〉. We note that the cardinality of H ′ is 144.
Furthermore we define a group of cyclotomic units
E3 = 〈1 − ζi

45 | i = 1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19〉.
The following is the main result in this paper.

Theorem 5.2. We have rankZ E12E3 = 299.
Proof . The determination of rankZ E12E3 is

slightly difficult. We can consider

∣∣εσ
1

∣∣=
∣∣∣∣Φ

(
z0;

(
16/18
1/18

)
,

(
1/18
1/18

)
;
(

1/2
1/2

)
,

(
1/2
1/2

))1−τ2∣∣∣∣

for suitable extension of σ. But we can only assert
that

∣∣εσ
2

∣∣=
∣∣∣∣Φ

(
z0;

(
0/18
3/18

)
,

(
1/18
1/18

)
;
(

1/2
1/2

)
,

(
1/2
1/2

))(1−τ2)ρ∣∣∣∣

for some ρ ∈ G(K/k) and ζσ
45 = ζ2

45, ζ7
45, ζ17

45 , ζ22
45 , ζ32

45

or ζ37
45 . We need to calculate the rank of 299 × 540

matrix similar to (3). Let

H ′′ =

{
τ8, στ8, τ9, στ9, η2

1 , ση2
1 , τ8η2

1 ,

στ8η2
1 , τ9η2

1 , στ9η2
1 , στ7η2

1η2
2η2

3

}
.

We calculated numerically the determinants of mi-
nor matrices of dimension 299 consisting of columns
associated to H ′ ∪ σH ′ ∪ H ′′ for all possible values
of εσ

2 and ζσ
45 and verified that the determinants are

non-zero for all cases. Hence we fortunately conclude
that rankZ E12E3 = 299.

The computations were executed on a 64-bit
work station DEC Alpha 500/333. A custom pro-
gram by C and assembly language was written for
calculating approximate values of theta functions
with high precision. Specifying independent units
and computing ranks of matrices were handled by
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TC which is an interpreter of multi-precision C lan-
guage developed by one of the authors.
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