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We are concerned with our method to construct infinitely divisible
random measures on T based on Poisson random measures on T
(R \ {0}). As an application we discuss the equivalence problem for infinite-
ly divisible random measures on T.

1, Preliminaries, Let T be an arbitrary nonempty set and be a
-ring of subsets of T. We assume there exists an increasing sequence {Tn;
n _> 1} c with T--Un__ Tn and {t} ff for each t T. Let A-
{A (A) ;A if} be an infinitely divisible random measure (or ID random mea-
sure) on T with no Gaussian component, which is defined on a basic prob-
ability space (q, o, P) (see [3]). In other words, A is a real stochastic pro-
cess characterized by

f g(z, x)M(dtdx) ](1.1) E[exp(izA(A))] exp[izv(A) + f no
(zR,A3"),

where g(z, x) exp(izx) 1 izxl(x), ]-- (-- 1,1) and Ro R \ {0}.
Here v is an R-valued signed measure on and M is a measure on S T
Ro satisfying

; f (1 A x)M(dtdx) < c (d :7).(1.2)
"AxRo

We mean by A -- [v, M] that the probability law of A is determined by pa-
rameters and M. We denote by P the probability measure on a measur-
able space (R,(R)) induced by the map A’/2 w--)A(’, co) R,
where R is the set of all R-valued functions on and (R) is the

Ra-algebra on generated by all coordinate functions. The product measur-
able space (S, ) is given by --a() (3(Ro), where a() is the
a-algebra on T generated by and (Ro) is the Borel a-algebra on Ro. Let
A- A/(S)be the totality of nonnegative (possibly infinite) integer-valued

measures on (S, ). Let +(S)be the set of all nonnegative measurable
functions on (S, ). We denote by 3(A) the a-algebra on A/ generated by
all functions f* on A given by

f * (P) (P’ f) Lfd for f +(S) and

An A-valued random element is called a Poisson random measure on S with
intensity M if it is defined on (Q, , P) and its Laplace transform is given
by
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(1.3) E[exp(-- (, f))] exp[-- f fs {1 exp(- f(t, x))}M(dtdx)]
for f if:+ (S).

2. A construction of infinitely divisible random measures. In this sec-
tion we shall construct a version of A _a Iv, M] based on a Poisson random
measure on S. For simplicity we may assume M(S) > O.

Case (I)" M(S) < c. For each k _> 1, let (S, Ae, P) be a probability
space given by P M(S)-eM, where we mean by (S,e, M) the
k-fold product measure space of (S, A, M). Then we consider a probability
space (*, if*, P*) defined by

Sk *(2.1) O* U=o {A* U=oA;A(k 0)},

A* *P*(A*) exp(-- M(S)) (kI)-M(S)P(Ae) for U A ff
k=O k=O

where (So, o, Po)is the trivial probability space given by S- {0} and
o= { sO}. We call (*, if*, P*)the basic canonical probability space
associated with (S, , . Let ’D*N be an ff*/(N)-measurable
map given by (0) 0 and
(2.2) ((w*), f) ,lf(P,(w*)) for f ff+(S)

*), *) Swhen w (p(w "’’,p(w (k 1). Then we obtain a Poisson
random measure on S with intensity M with respect to P*. We define

A*(A, + f x (a ax, fx xJ

*)(Aff, m
where we put (U, *) [(*)]( for U and O Then we

have
Proposition 1. The process A*= {A*(A);A if} is an ID random

measure on T which is defined on (O*, *, P*) and characterized by A* =
[v,.

Case (II): M(S)= . On account of (1.2) we can choose a sequence

{S,; n 2 1} of disjoint subsets of S satisfying S- U=x S, and 0
< M(S,) < (n 2 1). Let (M,;n 1} be a sequence of finite measures
on (S, ) defined by M,( M(U Sn) for U . Let us introduce an

infinite product probability space
(e.41 (, , P n=l (* *,
where (O*, if*, Pff)is the basic canonical probability space associated
with (S, , M,). We call (, , ) the canonical probability space assoacited
with decomposition M- ,= M. on (S, ). Then we have Poisson random
measures W, N",=1 ( ,) and W =1 ( ,) on S respectively with
intensities M( "=1 M and M. Here denotes the n-th projection map
from (O*) onto D* Now we define, for each n > 1

(2.5) A(A, ) v(A) + x,(dtdx, ) xM,(dtdx)
xRo xJ

On account of the Levy’s equivalence theorem on the convergence of series
with independent summands, we can find a random variable (A) to which
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{.A,(A)} converges almost surely as n oo. Thus we have
Proposition 2. The process- {=(A) ;A Y} is an ID random mea-

sure on
In the rest of this section we are concerned with a realization of A

based on the space W- W(S). We mean by (W, N(W), QM) a probability
space given by
(2 6) QM [p,] QMin Case (I) and [l#] in Case (II),
where [P*]e and [l#]v stand for the images of P* and l# induced by q) and

respectively. Then the identity map on (A/, N(W), QM) is considered as
a Poisson random measure on S with intensity M. Furthermore we can real-
ize A d [v, M] in the space of R-valued signed measures on Y whenever
the following conditions are satisfied.

(2.7) For each A Y, there exists n >-- 1 such that A c T,;

f xlM(dtdx) =- re(A) < oo (A 3").(2.8)

Let H+ {H+(A);A 3"}, H- {H-(A);A} and H= {H(A);
A } be ID random measures on T, which are defined on (A/, (W),
QM) and expressed as follows:

(2.9) H+/-(A, ,) v+/-(A) + re(A) + x ,(dtdx) x (dtdx)
xRo x]

(2.10) H(A, ) v(A) + f fa xv(dtdx) f fa xM(dtdx).
xRo x]

Here v v --v stands for the Jordan decomposition of v. We put Re-
{--/-__ x > 0} and Me(U) M(U (T x Re)) for U respectively. Then
we have

Theorem 1. Assume (2.7) and (2.8). Then He
and H are characterized by

H d [v+/- + m, Me and H d [v, M]. Furthermore H+
and H- are inde-

pendent and also there exists a set 3/0 N(W) with QM(Wo) 1 satisfying
(2.11) H(A, u) H+(A, u) H-(A, u) and

O <_ H +/-(A, u) < oo (A :7, u A/o).
3. The law equivalence of infinitely divisible random measures. In

what follows we discuss the equivalence problem for ID random measures
on T based on the method stated in Section 2. Given a-finite measures tt and
on a measurable space (E, $), we mean by/ u that/z and are equiva-

lent, i.e., mutually absolutely continuous. The Hellinger-Kakutani distance
and inner product are defined respectively by

dist (g, u) d(-fi d(-d-) and (, ) /dltdu.

Theorem 2. Let At and

[v, M] (j- 1, 2). Then PA Pa. if the following three conditions hold
simultaneously"
(E.1) M () M(),
(E.2) dist(M

yz(A) f f x{/(1)- M()} (dtdx) (A 7).(E.3)
xj
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4. The outline of the proof of Theorem 2. First we construct versions
of A1 and A2 based on Poisson random measures on S along the procedure
stated in Section 2. For simplicity we devote ourselves to the case that
Mu)(S) oo (d"- 1, 2). Then we can find a decomposition S-- U n=1Sn
with 0 < Mu)(S) < c(n _> 1, j- 1, 2). For each j- 1, 2, we construct
the canonical probability space

(.0, , iOu) II (9", *, p*U))
=1

M"(j)
associated with decomposition Mu _.._ on (S, ), where we put
MU)(U) MU)(U f S) for U . Now (E.1) implies M M and

en*) en*2) for each n > 1. Further (E.2) impliesalso
(4.1) H:: (P.*( P*() exp[-- (1/2)dist(M(" M(’)I > 0
Therefore we obtain iI() (- by the Kakutani’s theorem on the equiva-
lence of infinite product probability measures (see [2]). By applying Proposi-
tion 2, we obtain stochastic processes Au)- {Af (A)’, A } (j- 1, 2)
satisfying the following two conditions.
(4.2) u) is defined on (t, ,, /u)) and characterized by Au)oo =d [V, M u)]
(4.3) For each A , the sequence {A(f(A);n _> 1} converges almost surely
to/u) (A) with respect to u) /u)as n--* c, where we put .,.(n) E__ and

(4.4) ._, xv(,) (dtdx)
xRo ’ "A xl

(A , 6 D).
On account of (E.2) and (4.4) we have the following equations:

XtlVl(n) "’*(n)" (dtdx) x } (dtdx),(4.5) lim_.oo

fi(i) (A, o) fi() (A, &) v(A) y2(A) ff "’() az()} (dtdx)(4.6)
A1

for A . :7, (b D, and n

_
1. Therefore combining (E.3) with /5(1) /5(2)

p(2)yields that ()(A) ft.(2)(A) a.s. with respect to i(1)
and also Now put-

ting O(A, Co) fl()(A, Co) for A e :7 and 5) , we have a process 0-
(O(A) A ) which is characterized by
(4.7) O d [v, M u)] with respect to (j 1, 2).

o (J 1 2) where [/Su] o standsThis implies thepequalities, Pa,-- [/u)]
for the image of induced by the map 0 0 & 0(’, 6)) R. Thus
we obtain the desired relation Pal Pa from /51 iOe).
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