No. 9] Proc. Japan Acad., 69, Ser. A (1993) 363

83. Group Rings and the Norm Groups

By Shin-ichi KATAYAMA

Tokushima University
(Communicated by Shokichi IYANAGA, M. ]. A., Nov. 12, 1993)

1. Introduction and preliminary lemmas. Let # be a natural number
> 1 and G be a cyclic group of order # generated by d. We consider in this
note the cyclic extension L/F of fields with the Galois group G Leta<s L™
The well-known Hilbert theorem 90 asserts that gitorre” T = 1 if and
only if there exists b € L” such that @ = b'7°. Now let ¢ be an indetermi-
nate and set D, = {f(®) € Z[A | f(® divides " — 1}. For f(® € D,, we
shall denote f*(f) = (" — 1)/f(#). Obviously one sees f*(f) € D, and
(fH* () = f(8). We define now:

(1. 1) f(® € D, is called of H-type if the following holds:

For any cyclic extension L/F and any @ € L*, @’ =1 if and only if there
exists b € L* such that a = b” .

If there is no fear of confusxon we shall abbreviate f(#) or f(o) to f. It is ob-
vious that @ = b’ implies a = 1, so that the above definition can be simpli-
fied as follows:

(1.2) f is of H-type, if a
a= b
f=1t"—1 is trivially of H-type, and Hilbert theorem 90 says that f=
1+ t+ -+ + "' is of H-type. W. Hurlimann [2] has proved an interesting
result (“Cyclotomic Hilbert theorem 90”) saying that the #-th cyclotomic
polynomial @,(f) is also of H-type.

The aim of this paper is to determine the set of all polynomials
(€ D,) of H-type, which will be denoted with H,. The result of [2] will be
stated as

Lemma 1. @, € H,.

We denote the greatest common divisor and the least common multiple of f,
g € ZIA by (f, g and {f, g}, respectively. If f, g € D, we have clearly
f, 9, {f, g €D,

Lemma 2. If f, g € D, are of H-type, then (f, g and {f, g} are of
H-type.

Proof. We denote f,=(f, @ and f=ff,g=/fg and " —1
= f.f,.g,h. We shall show f, = (f, g) is of H-type. For any @ € L™ such that
af" = 1, one sees @’ = 1. Since f is of H-type, there exists b € L™ such that

= b*"  Then af" = (b")* = 1. Since, g is of H-type, there exists ¢ € L”
such that b" = ¢* Hence a = (") = ¢/*" = ¢/5. In the same way as
above, one sees that {f, g} is also of H-type.

For the case m | #, we define an injection =,,,, from D, to D, by putting
Tom(f(®) = f(t'), where | = n/m. We shall abbreviate ,,,(f(#) to

=1 implies the existence of b with
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F(® when no confusion is to fear. Then from the fact (f)* = (), we have
the following

Lemma 3. If f€ D,, is of H-type, then f = 7,,,(f) € D, is also of
H-type.

For a subset {h,, h,,...,h,} < H,, <hy, h,,...,h,> will denote the set
consisting of all the polynomials which are obtained by applying the opera-
tions (,), {,} on Ay, h,,...,h, finite number of times. From Lemma 2, one
sees that <k, h,, ...,k is also a subset of H,. H, will denote the set
<1,,,(@,), (t* — 1)*>, where d runs over all d|#. Then, from Lemmas 1, 2,
3, we have H: C H, and the induction on the number of distinct prime fac-
tors of »n yields the following proposition.

Proposition 1. f € H: if and only if f satisfies the following condition. If
@, divides f for some d | n, then for any d’ such that d| d’ | n, @, divides f.

Our main theorem claims that Hy = H,.

2. A proposition on the norm group. In this section, we assume that #»
is a composite number and decomposes into # = ml(m, [ > 1) and fix [ for
a while. We denote the invariant field associated with <o'> by K. For any
f € ZI[G], ¥, denotes the G-endomorphism of L* defined by ¥,(x) =z’
We denote by ¢,(H) (or briefly by ¢q(#)) the polynomial II}, @,(#. Then we
have the following proposition.

Proposition 2. With the above notation, we have

Ker U, =T K,
2

where K, runs over all the maximal subfields contained in K.

Without loss of generality, we may assume [ = p,* **p,, where p,,* " P,
are distinct primes. Let /; be the number //p; and K; be the intermediate
fields corresponding to (0 >. Then the maximal subfields contained in K are
K,...,K, When =1, we have ¢() = t— 1 and K, = F and the above
proposition is obvious. Next, we recall the following elementary fact.

If (a, b) = ¢, using an analogy of the Euclidean algorithm, we see that
there exist A’ (5), g (t) € ZI[f] such that

-1\, _ -1

(t )h(t)+( )g(’) T—1
From this fact, one can prove the following lemma using the induction on
r=2.

Lemma 4. Let g,(D) be the polynomial q(D/(t" — 1) € D,(1 < i< p).
Then there exist h;(£) € Z[t] such that

ﬁlgi(t)h,.(t) 104> 2).

by __
Proof. V\;hen r =2, we have | = p,p,, () = @, () = tt_—ll, 2,(1)
t 2

1
=0, = —5—71 - so that there exist h,(®, hy,() € Z[f] such that h,g, +

h,g, = 1 by the abovecremark.
Next, assume that the lemma holds for the case » — 1 = 2, so that for [,
= p,* b, y, there exist h(#),...,h,_,(f) with
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(S At S
" t = .
=1 @, () (""" — 1)
Substituting £ to ", we obtain
r=1 tl - 1 »
h, () = 1.

g Dyy (4
=, (") (" — 1)
Since @, (¢"") = @,() @, (), we obtain
r—1
% gOh, (") = &, ().

(P (7 — 1
Putting &,,(H) = hgt(t))((tt — 1)) € Z[t], we have
I'

el £ —1
2 gWh,® = 7=1-
i=1
In the same way as above, for any I, there exist h;;(#) € Z[f] such that

Iy
-1
2 gh,) = tt_ 1 - Since (I, ...,l,) =1, one can choose h,() €

Z[1] such that

égmmm=1.

Now we shall prove Proposition 2 for the case # 2 2. From the fact
(¢t — 1) | g(#), it is obvious that Ker ¥, D II_; K;. Conversely if x € Ker

. "—
T, put x; =2 (1 < i< . Then z/ "' = z%” = 1. Hence we have z,

€ K;. From Lemma 4, there exist h;(#) € Z[#] such that 2 g,(Dh,(#) = 1.
Hence we have
= R OmO fI x::,(a) - I’I Kix’
i=1 i=1
which completes the proof of Proposition 2.

Lemma 5. Let A be an elementary abelian group (Z/ mZ)’ and A; be the
subgroup {(xy, . ..,x) |z, = 2, € Z/MmZ when j = k mod 1}. A, denotes the
subgroup generated by A,,. . .,A,. Then we have A, + A.

Proof Let A’ be Z' and Aj be the subgroup {(x,...,x) |z, =z, € Z
when j = kmod I;}. A, will denote the subgroup generated by A7, ..., A4,
Then the rank A, = rank M’. Here M’ is the following matrix of (}; + - -~
+ 1,, D-type.

E, - E,
M = :’2 :’2 , were E, is the I, X /; unit matrix.
E, - E,
If rank M’ < [, then it is obvious that Ay # A’. So we may consider only the

1

case l; + - -+ + [, = I One can take / suitable row vectors vy,...,v, of M’
U,

such that the / X I matrix 7" = | : | has the same rank rank T = rank
v,

M’. Let { be the primitive I-th root of 1. Then one sees
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1 0
P[¢ ][0
VIRV

Hence the determinant | 77| = 0. Therefore, we get rank M’ = rank T’ < I.
Finally, similar argument modulo m implies rank,,, A, < rank A = I,
which completes the proof.

Proposition 3. With the above notation, we have

(i) If L is an wnramified local number field, K* = (II, K;) Ny, L", where
K, runs over all the maximal subfields of K.

(i) If L is a global number field, K™ /(II, K;*) Ny, L” is an infinite abe-
lian group, where K, runs over all the maximal subfields of K.

Sketch of proof. From local class field theory, one can easily verify the
result (i). Let v be a place of F which is extended to / distinct places »(K) in
K and every v(K) is inert in L/ K. We denote the / extensions of v to L by
v(L) and the restrictions of v(K) to K, by v(K,). We note that Chebotarev’s
density theorem assures the existance of infinitely many places v € F which
satisfy the above conditions. We denote the completions of F', K,, K, L by
F,, (KD, Koarr Lowy- We abbreviate
H (KI)U(KI)! H Kv):K)’ UH L:(L)

(K |y
to (K),,, , L,. Then, from local class field theory, we have K, /(I
(K».) NL,KL,, = A/A, where A, A, are those in the above lemma. Hence
K, #+ (I1,(K).) N.L,. Therefore the idele groups K, , (K1, L, satisfies
K, # (II,(K) ;) N,,L, and more precisely K, /(II,(K) ) N, L is an in-
finite abelian group. Combining global class field theory and Hasse’s norm
theorem, one obtains that K™ /(Il; K;') N,,L”" is an infinite abelian group.

3. Proof of the main theorem. Suppose f is of H-type and f & H,.
Then one can choose a H-type polynomial g € {f, H,> (€ H) such as
g =0,A<iI<mor g®) = ( — 10, (1), where I=1p, (p, is
prime).

First consider the case g = D, From the assumptlon that g is of H—type
we have Ker®, = (L)* . Since g*(0) = ¢,(0) (6’ — 1)*, we have 5@

(NL/K .r)q’(a) for any x € L*. Hence we have the equality Ker,
= (L) = (N L)

On the other hand, from the fact g(® | (t' — 1), we have Ker¥W,C K.
Hence, from Lemma 1, we have Ker¥, = {x € K~ | 259 =1} = (K ya@,
Hence we have the equality (N, L" )q'(a) = (K*)"”. Hence, from Proposi-
tion 2, we have K™ = (Il K;') N, L, where K, runs over all the maximal
subfields of K, which contradicts Proposmon 3.

Next consider the case g(® = (' — 1)* @, (1) is of H-type. Then
gt =« — 1)/@,&(t) From the assumption that g(#) is of H-type, we
have Ker¥, = (L)* @

On the other hand, from the fact that z*” = NL/K(xq’"w)) and Hilbert
theorem 90, there exists ¥ € L™ which satisfies x o = ¥ = 8 D)o@
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§°@ e KX where K, is the invariant fields
£ @Y = 1 there exists z € K. such
that x = yg (”)zq"w) from Lemma 1. Conversely, if £ = yg @29? for some
y € L™ and z € K, then one sees * € Ker¥,. Hence we have shown Ker?,
= (L )gL(”)(K )” Hence we have (K, )q"(”) c (L)* e , that is, for any z
€ K/, there exists y € L* such that 2z = y“'l m. Since y° oo
() = 27" =1, we have y € K.
g+ (o) __ q;, (o) q;,(0)

Conversely for any y € K™, y (N )™ € (K™, Hence
we have shown (K, )™ = (NK/K )q'lw)

From Proposition 2, we have K = (I1,K;) NK,KK , where K, runs
over all the maximal subfields of Kl, which contradicts Proposition 3.
Therefore we have shown the following theorem

Theorem. With the above notation, we have H: .
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for any x € Ker¥,. Then x/y
associated with <0 >. Since (xz/y
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