8. Bernstein-Gelfand-Gelfand Resolution for Generalized Kac-Moody Algebras

By Satoshi NAITO

Department of Mathematics, Shizuoka University (Communicated by Kiyosi ITÔ, M. J. A., Feb. 12, 1993)

Notation. Let $A = (a_{ij})_{i,j \in I}$ be a real $n \times n$ matrix satisfying the following conditions: (1) $a_{ii} = 2$, or $a_{ii} \leq 0$; (2) $a_{ij} \leq 0$ $(i \neq j)$, and $a_{ij} \in \mathbf{Z}$ if $a_{ii} = 2$; (3) $a_{ij} = 0 \Leftrightarrow a_{ji} = 0$. We call such a matrix a GGCM. Let $\mathfrak{g}(A)$ be a generalized Kac-Moody algebra (= GKM algebra), over the complex number field \mathbf{C} , with Cartan subalgebra \mathfrak{h} , the set of simple roots $\mathbf{\Pi} = \{\alpha_i\}_{i \in I}$, and the set of simple coroots $\mathbf{\Pi}^\vee = \{\alpha_i^\vee\}_{i \in I}$. Then, we have the root space decomposition: $\mathfrak{g}(A) = \mathfrak{h} \oplus \sum_{\alpha \in A}^{\oplus} \mathfrak{g}_{\alpha}$, where \mathfrak{g}_{α} is the root space attached to a root $\alpha \in \Delta = \Delta^+ \cup \Delta^- \subset \mathfrak{h}^*$.

Let J be a finite type subset of the index set I, that is, a subset of I such that the submatrix $A_J := (a_{ij})_{i,j \in I}$ of $A = (a_{ij})_{i,j \in I}$ is a direct sum of generalized Cartan matrices of finite type. Corresponding to such a subset J of I, we define the following Lie subalgebras of $\mathfrak{g}(A)$ and subset of the Weyl group W:

$$\begin{split} \mathfrak{u}^{\pm} &:= \sum_{\alpha \in \varDelta^{+}(J)}^{\oplus} \mathfrak{g}_{\pm \alpha}, \ \mathfrak{m} := \mathfrak{h} \oplus \sum_{\alpha \in \varDelta^{+}_{J}}^{\oplus} (\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}), \ \mathfrak{p} := \mathfrak{m} \oplus \mathfrak{u}^{+}, \\ & W(J) := \{ w \in W \mid \varDelta^{+} \cap w(\varDelta^{-}) \subset \varDelta^{+}(J) \}, \end{split}$$

where $\Delta_J^+ := \Delta^+ \cap (\sum_{i \in J} \mathbf{Z}_{\geq 0} \alpha_i), \Delta^+(J) := \Delta^+ \setminus \Delta_J^+.$

§1. The existence of the weak BGG resolution for GKM algebras. Let J be a finite type subset of I. We put $P^+:=\{\mu\in \mathfrak{h}^*\mid \langle \mu,\alpha_i^\vee\rangle\geq 0\ (i\in I),\langle \mu,\alpha_i^\vee\rangle\in \mathbf{Z}_{\geq 0}\ \text{if }a_{ii}=2\}$, $P_J^+:=\{\mu\in \mathfrak{h}^*\mid \langle \mu,\alpha_j^\vee\rangle\in \mathbf{Z}_{\geq 0}\ (j\in J)\}$. Let $L(\Lambda)$ ($\Lambda\in P^+$) be the irreducible highest weight $\mathfrak{g}(A)$ -module with highest weight Λ , $L_{\mathfrak{m}}(\lambda)$ ($\lambda\in P_J^+$) the irreducible highest weight m-module with highest weight λ , and $V_{\mathfrak{m}}(\lambda)=U(\mathfrak{g}(A))\otimes_{U(\mathfrak{p})}L_{\mathfrak{m}}(\lambda)$ ($\lambda\in P_J^+$) the generalized Verma module with highest weight λ . Note that the Verma modules $V(\lambda)$ ($\lambda\in \mathfrak{h}^*$) are precisely the generalized Verma modules $V_{\mathfrak{h}}(\lambda)$ for the case $J=\emptyset$.

From now on throughout this paper, we assume that the GGCM $A = (a_{ij})_{i,j \in I}$ is symmetrizable. Then, there exists a positive diagonal matrix D such that $D^{-1}A$ is symmetric.

Let Π^{re} : = { $\alpha_i \in \Pi \mid a_{ii} = 2$ } be the set of real simple roots, and Π^{im} : = { $\alpha_i \in \Pi \mid a_{ii} \leq 0$ } the set of imaginary simple roots of $\mathfrak{g}(A)$. For $\Lambda \in P^+$, we denote by $\mathscr{S}(\Lambda)$ the set of sums of distinct, pairwise perpendicular, imaginary simple roots $\alpha_i \in \Pi^{im}$ with $\langle \Lambda, \alpha_i^\vee \rangle = 0$. Here, for α_i , $\alpha_j \in \Pi^{im}(i \neq j)$, α_i and α_j are said to be perpendicular if $a_{ij} = a_{ji} = 0$. We simply write \mathscr{S} for $\mathscr{S}(0)$, $0 \in \mathfrak{h}^*$.

We have the following lemma for the relative Ext bifunctor $\operatorname{Ext}^1_{(g(A),m)}$

(cf. [6]), defined in the category $\mathscr{C}(\mathfrak{g}(A),\mathfrak{m})$ of all $\mathfrak{g}(A)$ -modules which decompose into direct sums of finite dimensional irreducible m-modules.

Lemma 1.1. Let $\Lambda \in P^+$, $w_i \in W(J)$, and $\beta_i \in \mathcal{S}(\Lambda)$ (i = 1, 2). If $\operatorname{Ext}^1_{(g(A),m)}(V_m(w_1(\Lambda + \rho - \beta_1) - \rho), \ V_m(w_2(\Lambda + \rho - \beta_2) - \rho)) \neq 0$, then we have $\ell(w_1) + ht(\beta_1) \leq \ell(w_2) + ht(\beta_2)$.

Here, ρ is a fixed element of \mathfrak{h}^* such that $\langle \rho, \alpha_i^{\vee} \rangle = (1/2) \cdot a_{ii}$ $(i \in I)$, $\ell(w)$ $(w \in W)$ is the length of w, and for $\beta = \sum_{i \in I} k_i \alpha_i$ $(k_i \in \mathbf{Z}_{\geq 0})$, we put $ht(\beta) = \sum_{i \in I} k_i$

From now on, we write $(w, \beta) \circ \Lambda = w(\Lambda + \rho - \beta) - \rho$ for (w, β) $\in W \times \mathcal{S}(\Lambda)$.

By the arguments similar to the ones in [3], [7], and [8], using Lemma 1.1, we can prove the following theorem, which generalizes a classical result of Bernstein-Gelfand-Gelfand (= BGG) to GKM algebras (cf. [1]).

Theorem 1.2 (Existence of the weak BGG resolution). Let $A = (a_{ij})_{i,j \in I}$ be a symmetrizable GGCM. Then, for the irreducible highest weight module $L(\Lambda)$ with highest weight $\Lambda \subseteq P^+$ over the GKM algebra $\mathfrak{g}(A)$, there exists a g(A) -module exact sequence:

where
$$C_p(\Lambda) \stackrel{\partial_0}{\leftarrow} C_0(\Lambda) \stackrel{\partial_1}{\leftarrow} C_1(\Lambda) \stackrel{\partial_2}{\leftarrow} C_2(\Lambda) \stackrel{\partial_3}{\leftarrow} \cdots$$
, where $C_p(\Lambda) = \sum_{\substack{w \in W(J), \beta \in \mathcal{S}(\Lambda) \\ \ell(w) + ht(\beta) = p}}^{\oplus} V_{\mathfrak{m}}((w, \beta) \circ \Lambda) \ (p \geq 0)$.

§2. Homology vanishing theorems. Here, as before, we assume that J

is a finite type subset of I. From Theorem 1.2, we obtain the following extension of Kostant's homology theorem to GKM algebras.

Proposition 2.1. Let $\Lambda \in P^+$. Then, as \mathfrak{m} -modules, $H_p(\mathfrak{u}^-, L(\Lambda)) \cong \sum_{\substack{w \in W(I), \beta \in \mathcal{S}(\Lambda) \\ \ell(w) + ht(\beta) = p}}^{\oplus} L_{\mathfrak{m}}((w, \beta) \circ \Lambda) \ (p \geq 0).$ Here, the sum is a direct sum of inequivalent irreducible (highest weight)

m-modules.

From Proposition 2.1, we can derive the following proposition on Lie algebra homology by the same argument as in [5]. For the notation, see [6].

Proposition 2.2. Let $\Lambda \in P^+$, $\mu \in P_J^+$. If $\mu \neq (w, \beta) \circ \Lambda$ for any $w \in$ $W(J), \beta \in \mathcal{S}(\Lambda), then$

$$\operatorname{Tor}_{n}^{g(A)}(L^{*}(\Lambda), V_{\mathfrak{m}}(\mu)) = 0 \ (n \geq 0),$$
 $\operatorname{Tor}_{n}^{(g(A),\mathfrak{m})}(L^{*}(\Lambda), V_{\mathfrak{m}}(\mu)) = 0 \ (n \geq 0).$

Here, $L^*(\Lambda)$ is the irreducible lowest weight $\mathfrak{g}(A)$ -module with lowest weight

By Theorem 1.2 and Proposition 2.2, we get the following theorem.

Theorem 2.3. Let Λ_1 , $\Lambda_2 \in P^+$. Assume that $\Lambda_1 - \Lambda_2 \neq \beta_1 - \beta_2$ for any $\beta_i \in \mathcal{S}(\Lambda_i)$ (i = 1, 2). Then, we have

$$\operatorname{Tor}_{n}^{\mathfrak{g}(A)}(L^{*}(\Lambda_{1}), L(\Lambda_{2})) = 0 \ (n \geq 0),$$

 $\operatorname{Tor}_{n}^{(\mathfrak{g}(A),\mathfrak{m})}(L^{*}(\Lambda_{1}), L(\Lambda_{2})) = 0 \ (n \geq 0).$

Corollary 2.4. Let $\Lambda \in P^+$. Assume that $\Lambda \neq \beta_1 - \beta_2$ for any $\beta_1 \in P^+$. $\mathcal{S}(\Lambda)$, $\beta_2 \in \mathcal{S}$. Then,

$$H_n(\mathfrak{g}(A), L(\Lambda)) = 0 \ (n \ge 0),$$

 $H_n(\mathfrak{g}(A), \mathfrak{m}, L(\Lambda)) = 0 \ (n \ge 0).$

For the relative Lie algebra homology $H_n(\mathfrak{g}(A), \mathfrak{m}, \mathbb{C})$ ($n \geq 0$) with \mathbb{C} the trivial one dimensional $\mathfrak{g}(A)$ -module, we have the following, as a generalization of [6, Corollary 6.7].

Theorem 2.5. $H_{2s+1}(g(A), m, C) = 0 \ (s \ge 0)$, and $\dim_{\mathbf{C}} H_{2s}(g(A), m, C) \ (s \ge 0)$

- = the number of elements of the set $\{(w, \beta) \in W(J) \times \mathcal{S} \mid \ell(w) + ht(\beta) = s\}$
- = the number of \mathfrak{m} -irreducible components in the Lie algebra homology $H_s(\mathfrak{u}^-, \mathbb{C})$.
- §3. Verma module embeddings. Let $\Delta^{re} := W \cdot \Pi^{re}$ be the set of real roots, and $\Delta^{im} := \Delta \setminus \Delta^{re}$ the set of imaginary roots. For $\alpha \in \Delta^{re}$, we define a reflection r_{α} with respect to α by $r_{\alpha}(\lambda) = \lambda \langle \lambda, \alpha^{\vee} \rangle \alpha$ $(\lambda \in \mathfrak{h}^*)$, where α^{\vee} is the dual real root of α .

Definition (Bruhat ordering). Let $w_1, w_2 \in W$. We write $w_1 \leftarrow w_2$ if there exists some $\gamma \in \Delta^{re} \cap \Delta^+$ such that $w_1 = r_\gamma w_2$ and $\ell(w_1) = \ell(w_2) + 1$. Moreover, for $w, w' \in W$, we write $w \leq w'$ if w = w' or if there exist $w_1, \ldots, w_r \in W$ such that

$$w = w_0 \leftarrow w_1 \leftarrow \cdots \leftarrow w_r \leftarrow w_{r+1} = w'.$$

Definition. Let β_1 , $\beta_2 \in \mathcal{S}$. We write $\beta_1 \leftarrow \beta_2$ if there exists some $\alpha_j \in \Pi^{im}$ such that $\beta_1 = \beta_2 + \alpha_j$. Moreover, for $\beta = \sum_{k \in K} \alpha_k$, $\beta' = \sum_{l \in L} \alpha_l \in \mathcal{S}$, we write $\beta \geqslant \beta'$ if $K \supset L$.

Definition. For (w_1, β_1) , $(w_2, \beta_2) \in W \times \mathcal{S}$, we write $(w_1, \beta_1) \leftarrow (w_2, \beta_2)$ if $w_1 \leftarrow w_2$ and $\beta_1 = \beta_2$, or if $w_1 = w_2$ and $\beta_1 \leftarrow \beta_2$.

Remark. Let (w_1, β_1) , $(w_2, \beta_2) \in W \times \mathcal{S}$. Then, the number of elements $(w, \beta) \in W \times \mathcal{S}$ such that $(w_1, \beta_1) \leftarrow (w, \beta) \leftarrow (w_2, \beta_2)$ is 0 or 2.

We can prove the following generalization of one of Verma's classical results, using the theory of Enright's completion functors.

Proposition 3.1. Fix $\Lambda \subseteq P^+$. Let (w_1, β_1) , $(w_2, \beta_2) \subseteq W \times \mathcal{S}(\Lambda)$. Then, we have

$$\dim_{\mathbf{C}} \operatorname{Hom}_{\mathfrak{q}(A)}(V((w_1, \beta_1) \circ \Lambda), V((w_2, \beta_2) \circ \Lambda)) \leq 1.$$

In the case where the equality holds in Proposition 3.1, we write

$$V((w_1, \beta_1) \circ \Lambda) \subset V((w_2, \beta_2) \circ \Lambda).$$

Proposition 3.2. Let $\Lambda \subseteq P^+$, (w_1, β_1) , $(w_2, \beta_2) \subseteq W \times \mathcal{S}(\Lambda)$. Then, $V((w_1, \beta_1) \circ \Lambda) \subseteq V((w_2, \beta_2) \circ \Lambda)$

$$\Leftrightarrow \quad w_1 \leqslant w_2, \, \beta_1 \geqslant \beta_2$$

$$\Leftrightarrow [V((w_2, \beta_2) \circ \Lambda) : L((w_1, \beta_1) \circ \Lambda)] \neq 0.$$

Here, for λ , $\mu \in \mathfrak{h}^*$, $[V(\lambda) : L(\mu)]$ denotes the multiplicity of $L(\mu)$ in $V(\lambda)$.

Now, let J be a finite type subset of I, and $\lambda \in P_J^+$. The generalized Verma module $V_{\mathfrak{m}}(\lambda)$ with highest weight λ is a quotient of the Verma module $V(\lambda)$ with highest weight λ . We denote by $K(\lambda)$ the kernel of the natural quotient map of $V(\lambda)$ onto $V_{\mathfrak{m}}(\lambda)$. If for λ , $\mu \in P_J^+$, $f:V(\lambda) \to V(\mu)$ is a nonzero $\mathfrak{g}(A)$ -module map, then we can easily see that $f(K(\lambda)) \subset K(\mu)$ by a classical result of Harish-Chandra. Therefore, f naturally deter-

mines a g(A)-module map $\hat{f}: V_{\mathfrak{m}}(\lambda) \to V_{\mathfrak{m}}(\mu)$ such that $\hat{f}(v+K(\lambda)) = f(v) + K(\mu) (v \in V(\lambda))$. We call this map the *standard map* associated to f. Then, by Proposition 3.2, we can prove the following.

Proposition 3.3. Let $\Lambda \in P^+$, and let (w_1, β_1) , $(w_2, \beta_2) \in W(J) \times \mathcal{S}(\Lambda)$ be such that $\ell(w_1) + ht(\beta_1) = \ell(w_2) + ht(\beta_2) + 1$. Then, there exists a nonzero $\mathfrak{g}(\Lambda)$ -module map $V_{\mathfrak{m}}((w_1, \beta_1) \circ \Lambda) \to V_{\mathfrak{m}}((w_2, \beta_2) \circ \Lambda)$ if and only if $(w_1, \beta_1) \leftarrow (w_2, \beta_2)$. In this case, the standard map associated to the inclusion of $V((w_1, \beta_1) \circ \Lambda)$ into $V((w_2, \beta_2) \circ \Lambda)$ is also nonzero.

§4. Construction of the strong BGG resolution. Theorem 1.2 gives no informations about the g(A)-module maps $\partial_p(p \ge 0)$. Here, we give an explicit construction of the strong BGG resolution, which is equivalent to the weak BGG resolution in Theorem 1.2.

Definition. Let us call a quadruple $\{(w_1, \beta_1), (w_2, \beta_2), (w_3, \beta_3), (w_4, \beta_4)\}$ of elements of $W \times \mathcal{S}$ a square if

$$(w_1, \beta_1) \leftarrow (w_i, \beta_i) \leftarrow (w_4, \beta_4) \ (i = 2, 3), \ (w_2, \beta_2) \neq (w_3, \beta_3).$$

Lemma 4.1. To each arrow $(w_1, \beta_1) \leftarrow (w_2, \beta_2)$, we can associate a number $c((w_1, \beta_1), (w_2, \beta_2)) \in \{1, -1\}$ such that the product of all numbers associated to the four arrows of any square $\{(w_1, \beta_1), (w_2, \beta_2), (w_3, \beta_3), (w_4, \beta_4)\}$ is equal to -1.

Let $\Lambda \in P^+$. Then, by Propositions 3.1 and 3.2, we can fix an injection $\ell_{(w_1,\beta_1),(w_2,\beta_2)}: V((w_1,\beta_1)\circ\Lambda) \to V((w_2,\beta_2)\circ\Lambda)$, for each pair (w_1,β_1) , $(w_2,\beta_2)\in W\times \mathcal{S}(\Lambda)$ in such a way that $\ell_{(w_2,\beta_2),(1,0)}\circ\ell_{(w_1,\beta_1),(w_2,\beta_2)}=\ell_{(w_1,\beta_1),(1,0)}$.

Now, we temporarily assume that $J = \emptyset$. Remark that, in this case,

$$C_{p}(\Lambda) = \sum_{\substack{w \in W, \beta \in \mathcal{S}(\Lambda) \\ \ell(w) + ht(\beta) = p}}^{\oplus} V((w, \beta) \circ \Lambda) \ (p \ge 0)$$

in the weak BGG resolution in Theorem 1.2. The next theorem gives an explicit construction of the strong BGG resolution.

Theorem 4.2. Let $\Lambda \in P^+$. For each $p \in \mathbb{Z}_{\geq 1}$, let $d_p : C_p(\Lambda) \to C_{p-1}(\Lambda)$ be the map defined by

$$d_{p} := \bigoplus_{\substack{\ell(w_{1}) + ht(\beta_{1}) = p \\ \ell(w_{2}) + ht(\beta_{2}) = p - 1}} d_{(w_{1},\beta_{1}),(w_{2},\beta_{2})}^{p} \cdot \ell_{(w_{1},\beta_{1}),(w_{2},\beta_{2})},$$

$$where \ d_{(w_{1},\beta_{1}),(w_{2},\beta_{2})}^{p} := \begin{cases} c((w_{1}, \beta_{1}), (w_{2}, \beta_{2})) & \text{if } (w_{1}, \beta_{1}) \leftarrow (w_{2}, \beta_{2}) \\ 0 & \text{otherwise,} \end{cases}$$

and let $d_0: C_0(\Lambda) = V(\Lambda) \to L(\Lambda)$ be a canonical surjection. Then, we have the following $\mathfrak{g}(A)$ -module exact sequence, which is equivalent to the weak BGG resolution in Theorem 1.2 for the case $J = \emptyset$:

$$\begin{array}{c} 0 \leftarrow L(\Lambda) \stackrel{d_0}{\leftarrow} C_0(\Lambda) \stackrel{d_1}{\leftarrow} C_1(\Lambda) \stackrel{d_2}{\leftarrow} C_2(\Lambda) \stackrel{d_3}{\leftarrow} \cdots, \\ where \ C_p(\Lambda) = \sum\limits_{\substack{w \in W, \beta \in \mathcal{S}(\Lambda) \\ \ell(w) + ht(\beta) = p}}^{\oplus} V((w, \beta) \circ \Lambda) \ (p \geq 0). \end{array}$$

We now return to the case where J is an arbitrary finite type subset of I. Let $\Lambda \in P^+$. Note that $(w, \beta) \circ \Lambda \in P_J^+$ for $(w, \beta) \in W(J) \times \mathcal{S}(\Lambda)$. For each $p \in \mathbb{Z}_{\geq 1}$, let $\hat{d}_p : C_p(\Lambda) \to C_{p-1}(\Lambda)$ be the map defined by

$$\hat{d}_{p} := igoplus_{\substack{\ell(w_{1}) + ht(eta_{1}) = p \ \ell(w_{2}) + ht(eta_{2}) = p - 1}}} d^{p}_{(w_{1},eta_{1}),(w_{2},eta_{2})} \cdot \hat{\ell}_{(w_{1},eta_{1}),(w_{2},eta_{2})},$$

where, for (w_1, β_1) , $(w_2, \beta_2) \in W(J) \times \mathcal{S}(\Lambda)$, $\hat{\iota}_{(w_1,\beta_1),(w_2,\beta_2)}$: $V_{\mathfrak{m}}((w_1,\beta_1) \circ \Lambda) \to V_{\mathfrak{m}}((w_2,\beta_2) \circ \Lambda)$ is the standard map associated to the inclusion $\iota_{(w_1,\beta_1),(w_2,\beta_2)}$: $V((w_1,\beta_1) \circ \Lambda) \to V((w_2,\beta_2) \circ \Lambda)$, and the number $d^{\flat}_{(w_1,\beta_1),(w_2,\beta_2)}$ is as in Theorem 4.2, restricted to $W(J) \times \mathcal{S}(\Lambda)$. By the classical result of Harish-Chandra, we can easily see that there exists a surjective $\mathfrak{g}(A)$ -module map $\hat{\eta}: V_{\mathfrak{m}}(\Lambda) \to L(\Lambda)$, which takes a highest weight vector generating $V_{\mathfrak{m}}(\Lambda)$ to a highest weight vector of $L(\Lambda)$. Then, we can prove the following extension of Theorem 4.2 by exactly the same argument as the one for [7, Theorem 11.4] or [8, Theorem 9.12].

Theorem 4.3. Let $\Lambda \in P^+$, and J be an arbitrary finite type subset of I. Then, we have the following $\mathfrak{g}(A)$ -module exact sequence, which is equivalent to the weak BGG resolution in Theorem 1.2:

$$\begin{array}{l} \text{3GG resolution in Theorem 1.2:} \\ 0 \leftarrow L(\Lambda) \stackrel{\widehat{\tau}}{\leftarrow} C_0(\Lambda) \stackrel{\widehat{d}_1}{\leftarrow} C_1(\Lambda) \stackrel{\widehat{d}_2}{\leftarrow} C_2(\Lambda) \stackrel{\widehat{d}_3}{\leftarrow} \cdots, \\ where \ C_p(\Lambda) = \sum_{\substack{w \in W(I), \beta \in \mathcal{S}(\Lambda) \\ \ell(w) + ht(\beta) \equiv p}} V_{\mathfrak{m}}((w, \beta) \circ \Lambda) \ (p \geq 0). \end{array}$$

References

- I. N. Bernstein, I. M. Gelfand, and S. I. Gelfand: Differential operators on the base affine space and a study of g-modules. Lie Groups and Their Representations (ed. I. M. Gelfand). Hilger, London, pp.21-64 (1975).
- [2] R. Borcherds: Generalized Kac-Moody algebras. J. Algebra, 115, 501-512 (1988).
- [3] H. Garland and J. Lepowsky: Lie algebra homology and the Macdonald-Kac formulas. Invent. Math., 34, 37-76 (1976).
- [4] V. G. Kac: Infinite Dimensional Lie Algebras. 3rd ed., Cambridge Univ. Press, Cambridge (1990).
- [5] S. Kumar: Extension of the category \mathcal{O}^s and a vanishing theorem for the Ext functor for Kac-Moody algebras. J. Algebra, 108, 472-491 (1987).
- [6] J. Lepowsky: Generalized Verma modules, loop space cohomology and Macdonaldtype identities. Ann. Sci. Éc. Norm. Sup., 12, 169-234 (1979).
- [7] A. Rocha-Caridi: Splitting criteria for g-modules induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite dimensional, irreducible g-module. Trans. Amer. Math. Soc., 262, 335-366 (1980).
- [8] A. Rocha-Caridi and N. R. Wallach: Projective modules over graded Lie algebras. I. Math. Z., 180, 151-177 (1982).