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Notation. Let A = (a;;);;c; be a real # X # matrix satisfying the
following conditions: (1) a@; =2, or a; <0; (2) a; <0G #*j), and
a; €Zif a; = 2; (3) a;; = 0= a;; = 0. We call such a matrix a GGCM.
Let g(A) be a generalized Kac-Moody algebra (= GKM algebra), over the
complex number field C, with Cartan subalgebra ¥, the set of simple roots
IT = {a;},.,, and the set of simple coroots IT" = {a;},c;. Then, we have the
root space decomposition: g(4) = § @ X 5., g, where g, is the root space
attached to aroot e € 4 = 47 U A~ < p*

Let J be a finite type subset of the index set I, that is, a subset of I such
that the submatrix 4, := (a;;);,;c; of A = (a;;);e; is a direct sum of general-
ized Cartan matrices of finite type. Corresponding to such a subset J of I, we
define the following Lie subalgebras of g(A) and subset of the Weyl group
w.

u'i= T g, mi=5DE® (g, Dg.), p:=mDu’,

aea* a4}
W) :={we W|A" nw@d) < a*(},

where 47 1= A" N (Z,, Z-qa), A7(J) = 47\ 4].

8§1. The existence of the weak BGG resolution for GKM algebras. Let J
be a finite type subset of I. We put P*:={p 9™ | <y, /> 20GE D,
{p, @) € Zoyifa,; =2}, Py i={pecy |y, a)> €Z.,(jE D). Let
L(A) (A € P") be the irreducible highest weight g(A)-module with highest
weight A, L, (A € P,+) the irreducible highest weight m-module with
highest weight 4, and V() = U(g(A) ® y, L, (1) (A € P]) the general-
ized Verma module with highest weight A. Note that the Verma modules
V(D) (A € §%) are precisely the generalized Verma modules V() for the
case J = 0.

From now on throughout this paper, we assume that the GGCM
A = (a;;);;<; is symmetrizable. Then, there exists a positive diagonal matrix
D such that D™'A is symmetric.

~Let II"*: = {a; € IT| a;; = 2} be the set of real simple roots, and

o™ :={a, € II|a; < 0} the set of imaginary simple roots of g(A). For
A € P*, we denote by JS(A) the set of sums of distinct, pairwise perpen-
dicular, imaginary simple roots a; € O™ with <A, a/> = 0. Here, for a;,
a; € "G #j), a; and a; are said to be perpendicular if a; = a;; = 0.
We simply write & for $(0), 0 € §*,

We have the following lemma for the relative Ext bifunctor Ext?gm),m)

ji
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(cf. [6]), defined in the category €(g(A4), m) of all g(A)-modules which
decompose into direct sums of finite dimensional irreducible m-modules.

Lemma 1.1. Let A€ P", w, € W(J), and 8; € S(A) (=1, 2). If

EXtig(A),m)(Vm(wl(A +o—=8)— 0, V,(w,(A+p— ) —p) #0,
then we have €(w,) + ht(B) = €(w,) + ht(B,).
Here, p is a fixed element of §* such that <o, &)> = (1/2) - a,; GE D,
(w) (w € W) is the length of w, and for B= 2,c; ki, (k; € Z~,), we put
ht(B) = 2,1 k..

From now on, we write (w,8) cA=wA+p— B —p for (w, B
€ W x S(A).

By the arguments similar to the ones in [3], [7], and [8], using Lemma
1.1, we can prove the following theorem, which generalizes a classical result
of Bernstein-Gelfand-Gelfand (= BGG) to GKM algebras (cf. [1]).

Theorem 1.2 (Existence of the weak BGG resolution). Let A = (a;)); es
be a symmetrizable GGCM. Then, for the irreducible highest weight module
L(A) with highest weight A € P* over the GKM algebra g(A), there exists a
g (A) -module exact sequence:

0 =L & C,) &, &y & -,
where C,(A) = >® V., ((w, B) ~ A) (p = 0).

weW(J),BeB(A)
L. Ly +heB)=p
§2. Homology vanishing theorems. Here, as before, we assume that J

is a finite type subset of I. From Theorem 1.2, we obtain the following exten-
sion of Kostant’s homology theorem to GKM algebras.
Proposition 2.1. Let A € P*. Then, as m-modules,
Hu, L) = Z° L (w,p- D @p=20.

weW(),BeS(A)
) ] L)y +ht(B)=p . . . .
Here, the sum is a direct sum of inequivalent irreducible (highest weight)

m-modules.
From Proposition 2.1, we can derive the following proposition on Lie
algebra homology by the same argument as in [5]. For the notation, see [6].
Proposition 2.2. Let A € P*, p € P,+. If u# (w,B) > A for any w €
W), B € S(A), then

Tord™® (L* (), V() =0 (n = 0),
Tor®®™ (L*(A), V..(w) = 0 (n = 0).
Here, L*(A) is the irreducible lowest weight g(A)-module with lowest weight
— A
By Theorem 1.2 and Proposition 2.2, we get the following theorem.
Theorem 2.3. Let A, A, € P*. Assume that A, — A, # B, — B, for any
B, € S(A) (G =1, 2). Then, we have
Torf® (L*(A), L(A)) =0 (n = 0),
Tor,?™ (L*(4,), L(4,)) = 0 (n 2 0).
Corollary 2.4. Let A € P*. Assume that A+ B, — B, for any B, €
BN, By, € B. Then,
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H,(gA), LA) =0n=0),
H,(gA), m, L(A) =0 =0).

For the relative Lie algebra homology H,(g(4), m, C) (n = 0) with C
the trivial one dimensional g(A4)-module, we have the following, as a gener-
alization of [6, Corollary 6.7].

Theorem 2.5. H, ., ,(g(4), m, C) =0 (s = 0), and

dim¢ H,,(g(4), m, C) (s = 0)
= the number of elements of the set {(w, ) € W(J) X S| &(w) +
ht(B) = s}
= the number of m-irreducible components
in the Lie algebra homology H,(u™, C).

§3. Verma module embeddings. Let A= W-II"° be the set of real
roots, and 4™ := A\ A" the set of imaginary roots. For &« € A’ we define
a reflection 7, with respect to & by 7,(1) = 2 — (A, a">a (1 € §™), where
a” is the dual real root of a.

Definition (Bruhat ordering). Let w,, w, € W. We write w, < w, if
there exists some 7 € 4™ N A" such that w, = »,w, and £(w,) = &(w,) + 1.
Moreover, for w, w € W, we write w < w’ if w= w’ or if there exist
wy,...,w, € Wsuch that

W= Wy W, <" — W, — W, = w.
~ Definition. Let 38,, 8, € 4. We write B, < B, if there exists some a; €
IT™ such that 8, = B, + a,. Moreover, for 8 = X,z a,, B = Z,c ¢, € S,
we write 8 = 8 if K D L.
Definition. For (w;, B), (w,, B,) € W X &, we write (w,, B;) — (w,, B,
if w, < w, and B, = B,, or if w; = w, and B; < B,.

Remark. Let (w,, 8,), (w,, B,) € W X J&. Then, the number of elements
(w, B € W X & such that (w,, B;) «— (w, B) < (w,, B,) is 0 or 2.

We can prove the following generalization of one of Verma’s classical
results, using the theory of Enright’s completion functors.

Proposition 3.1. Fix A € P*. Let (w,, B,), (w,, B,) € W X S(A). Then,
we have

dime Homyg,, (V((w,, B > A), V((w,, By) = A)) < 1.
In the case where the equality holds in Proposition 3.1, we write
V((w,, B = A) < V((w,, B,) = A).
Proposition 3.2. Let A € P, (w,, B, (w,, B,) € W X S(A). Then,
V((w,y, By A < V((w,, By) = A)
S w S wy, B =B,
< [V((w,, By ° A) : L((w,, B - A] # 0.
Here, for A, £ € 6%, [VQQ) : L)1 denotes the multiplicity of L(z) in V(R).

Now, let J be a finite type subset of I, and A € P,+. The generalized
Verma module V,,(4) with highest weight A is a quotient of the Verma
module V(A1) with highest weight A. We denote by K(A) the kernel of the
natural quotient map of V(A) onto V(D). If for A, € Py, f: V() —
V(1) is a nonzero g(A)-module map, then we can easily see that f(K(1)) C
K(u) by a classical result of Harish-Chandra. Therefore, f naturally deter-
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mines a g(A)-module map f:V, (1) — V, () such that f(v + K()) =
f() + K@) (v € V(). We call this map the standard map associated to f.

Then, by Proposition 3.2, we can prove the following.

Proposition 3.3. Let A € P*, and let (w,, B, (w, By € W(J) X S(A)
be such that €(w,) + ht(B,) = €(w,) + ht(B,) + 1. Then, there exists a non-
zero g(A)-module map V, ((w,, B) °A) — V, ((w, By) > A) if and only if
(w,, B) < (w,, B,). In this case, the standard map associated to the inclusion of
V((w,, B,) ° A) into V((w,, B,) ° A) is also nonzero.

§4. Construction of the strong BGG resolution. Theorem 1.2 gives no
informations about the g(A)-module maps 9,(p = 0). Here, we give an ex-
plicit construction of the strong BGG resolution, which is equivalent to the
weak BGG resolution in Theorem 1.2.

Definition. Let us call a quadruple {(w,, B), (w,, By, (ws, By,
(w,, By} of elements of W X & a square if

(w,, By) — (w;, B) — (w,, B) (:=2,3), (wy, B;) # (wy, B3).

Lemma 4.1. To each arrow (w,, B,) < (w,, B,), we can associate a num-
ber c((w,, By, (w,, B)) € {1, — 1} such that the product of all numbers
associated to the fowr arrows of any square {(wy, By, (w,, B,), (ws, By, (w,, B)}
is equal to — 1.

Let A € P*. Then, by Propositions 3.1 and 3.2, we can fix an injection
Canppp eyt VW, B« A) = V((w,, B;) © A), for each pair (wy, By,
(wy, BY) € WX B8(A) in such a way that Cup)00 ° Cws wysy —

Cwy,8y,(1,00
Now, we temporarily assume that / = @. Remark that, in this case,
c,H = X®° Viw,p A p=0

weW,8eS(A)
Lw)+ht(B)=p

in the weak BGG resolution in Theorem 1.2. The next theorem gives an ex-
plicit construction of the strong BGG resolution.

Theorem 4.2. Let A € P*. For each p € Z,, let d,: C,(A) — C,_,(A)
be the map defined by

. » .
d,: D d(wlﬁl),(wz,ﬁz) Cw,y,B)),(wgB2)
Lw)+ht B =p
Ly +ht(B=p—1

c((w,, By, (w,, By) if (w, B — (w, B,)

where d’ =
wpBy), Wy by * 0 otherwise

and let dy: Co(A) = V(A) — L(A) be a canonical surjection. Then, we have the
following g(A)-module exact sequence, which is equivalent to the weak BGG
resolution in Theorem 1.2 for the case ] = @:

0— L) < C,) <&,
where C,(A) = >®  V(w, B) > A (p=0).

weW,3eS(A)
Lw)+ht(B)=p

We now return to the case where J is an arbitrary finite type subset of
I Let A € P, Note that (w, B) = A € P; for (w, B) € W(J) x S(A). For
eachp € Z,, letd,: C,(A) — C,_,(A) be the map defined by
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. , .
dy = D d(wl,B,),(wz,Bz) Cw,8y),a0y85)9
Lwy) +ht (B =p
Lwy)+ht(By)=p—1

Wherev for (wl’ Bl)’ (wz’ Bz) = W(]) X “43(/1)’ ‘ (wl,Bl),(wz,Bz): Vm((wl’ Bl) °
A) =V, ((w,, B, °A) is the standard map associated to the inclusion
Canpsp sy - VW, By A — V((w,, By) ° A), and the number dfwvﬂl),(wrﬁz)
is as in Theorem 4.2, restricted to W(J) X JS(A). By the classical result of
Harish-Chandra, we can easily see that there exists a surjective g(A)-
module map 77 : V,,(A) — L(A), which takes a highest weight vector generat-
ing V,_,(A) to a highest weight vector of L(A). Then, we can prove the fol-
lowing extension of Theorem 4.2 by exactly the same argument as the one
for [7, Theorem 11.4] or [8, Theorem 9.12].

Theorem 4.3. Let A € P*, and J be an arbitrary finite type subset of
I. Then, we have the following g(A) -module exact sequence, which is equivalent
to the weak BGG resolution in Theorem 1.2 :

0—LW) =c,E e & ...,
where C,(A) = >® V.(w, B -A) @p=0).

weW(),BeB(A)
Lw)+ht(B)=p
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