57. On a Conjecture on Pythagorean Numbers

By Kei TAKAKUWA and You ASAEDA

Department of Mathematics, Gakushuin University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

L. Jeśmanowicz [1] conjectured that if u, v, w are Pythagorean numbers, i.e. positive integers with (u, v) = (v, w) = (w, u) = 1 satisfying $u^2 + v^2$ $= w^2$, then the diophantine equation on $l, m, n \in N$

$$u^l + v^m = w^n$$

has the only solution (l, m, n) = (2,2,2). (Cf. [2].) Since u, v, w are Pythagorean numbers, we have

$$u = x^2 - y^2$$
, $v = 2xy$, $w = x^2 + y^2$,

where $x, y \in \mathbb{N}$, with (x, y) = 1, x > y, $x \not\equiv y \pmod{2}$.

We shall consider here the following diophantine equation on $l, m, n \in N$ $(4a^2 - y^2)^l + (4ay)^m = (4a^2 + y^2)^n$

where $a, y \in N$ with $(a, y) = 1, 2a > y, y \equiv 3 \pmod{4}$, whence l is even, which is easily seen considering (1) mod 4.

Proposition 1. If a is odd, then $m \equiv n \pmod{2}$ and $m \neq 1 \Leftrightarrow n$ is even.

Proof. From (1) we have $(4ay)^m \equiv (2y^2)^n \pmod{4a^2 - y^2}$. By the assumptions on a, y,

$$\left(\frac{2^{2m}a^my^m}{4a^2-u^2}\right) = (-1)^m = \left(\frac{2^ny^{2n}}{4a^2-u^2}\right) = (-1)^n,$$

where $\left(\frac{*}{*}\right)$ is the Jacobi symbol. Hence $m \equiv n \pmod{2}$. If n is even, $m \neq 1$.

If *n* is odd, $(4a^2 + y^2)^n \equiv 5 \pmod{8}$ and $(4a^2 - y^2)^l \equiv 1 \pmod{8}$. Then we have $(4ay)^m \equiv 4 \pmod{8}$ from (1), hence m = 1.

Proposition 2. If a is even, then m is even.

Proof. From (1) we have $(4ay)^m \equiv (2y^2)^n \pmod{4a^2 - y^2}$. By the assumptions on a, y

$$\left(\frac{2^{2^m}a^my^m}{4a^2-u^2}\right) = (-1)^m = \left(\frac{2^ny^{2^n}}{4a^2-u^2}\right) = 1.$$

Hence *m* is even.

Proposition 3. If a is even and $y \equiv 3 \pmod{8}$, then n is even.

Proof. By Prop. 2, m is even. From (1) we have $1 \equiv 9^n \pmod{16}$ Hence n is even.

Theorem 1. Let a be odd, y = p odd prime, and $p \equiv 3 \pmod{4}$ in (1). If $m \neq 1$, then (l, m, n) = (2,2,2).

Proof. By Prop.1, n is even. Put l=2l', n=2n', and $(4a^2+p^2)^{n'}+(4a^2-p^2)^{l'}=A$, $(4a^2+p^2)^{n'}-(4a^2-p^2)^{l'}=B$. Clearly (A,B)=2. From (1) we have

$$2^{2m}a^mp^m=AB.$$

(2) $2^{2m}a^mp^m = AB.$ Assume $A \equiv 0 \pmod{p}$, then we have $(2a)^{2n'} + (2a)^{2l'} \equiv 0 \pmod{p}$, so

 $(2a)^{2|n'-l'|} \equiv -1 \pmod{p}$. Then $(2a)^{|n'-l'|}$ has order $4 \mod p$. This contradicts the assumption $p \equiv 3 \pmod{4}$. Therefore $B \equiv 0 \pmod{p}$.

Now there are two possibilities on choice of A, B in (2):

(2.1)
$$A = 2b^m, \qquad B = 2^{2m-1}c^mp^m$$

(2.2)
$$A = 2^{2m-1}b^m, \quad B = 2c^mp^m,$$

where a = bc, (b, c) = 1.

Case (2.1). $B \equiv 1 - (-1)^{l'} \equiv 0 \pmod{4}$, hence l' is even. $B \equiv -(-2p^2)^{l'} \equiv 2^{2m-1}c^mp^m \pmod{4a^2+p^2}$. By the assumptions on a, p,

$$\left(\frac{-(-2p^2)^{l'}}{4a^2+p^2}\right)=1=\left(\frac{2^{2m-1}c^mp^m}{4a^2+p^2}\right)=-1,$$

which is a contradiction. Thus (2.1) does not occur. Case (2.2). $A \equiv 1 + (-1)^{l'} \equiv 0 \pmod{4}$, hence l' is odd. $A \equiv 5^{n'} +$ $3^{l'} \equiv 0 \pmod{8}$. As l' is odd, n' is odd. $A \equiv (2p^2)^{n'} \equiv 2c^m p^m \pmod{4a^2}$ p^2). By the assumptions on a, p.

$$\left(\frac{(2p^2)^{n'}}{4a^2-p^2}\right) = -1 = \left(\frac{2c^m p^m}{4a^2-p^2}\right) = -(-1)^m.$$

Therefore m is even. Assume $m \ge 4$. $(A + B)/2 = (4a^2 + p^2)^{n'} = 2^{2m-2}b^m$ $+c^m p^m$. Then $5^{n'} \equiv 1 \pmod{8}$ as c, p are odd. Since n' is odd, $4 \equiv 0 \pmod{8}$, which is a contradiction, hence m=2. Then $A=(4a^2+p^2)^{n'}+(4a^2-p^2)^{1'}$ $=8b^2 \le 8a^2 = (4a^2 + p^2) + (4a^2 - p^2)$. Therefore n' = l' = 1. Thus (l, m, n) = (2,2,2).

Theorem 2. Let a be even, y = p odd prime, and $p \equiv 3 \pmod{8}$ in (1). If 2a + p is prime and 2a - p is prime or 1, then (l, m, n) = (2, 2, 2).

Proof. By Props. 2, 3, both m and n are even. Now let l', n', A and Bbe as the proof of Theorem 1, then (A, B) = 2 and $B \equiv 0 \pmod{p}$. Let a = $2^{s}a_{0}$ ($s \ge 1$), (2, a_{0}) = 1, then there are two possibilities on choice of A, B in (2):

(2.3)
$$A = 2b^m, B = 2^{m(2+s)-1}c^mp^m,$$

(2.4) $A = 2^{m(2+s)-1}b^m, B = 2c^mp^m,$

$$(2.4) A = 2^{m(2+s)-1}b^m, B = 2c^m p^m,$$

where $a_0 = bc$, (b, c) = 1.

Case (2.3). $B \equiv 1 - (-1)^{l'} \equiv 0 \pmod{4}$, hence l' is even, then $(4a^2)^{l'}$ $-p^2$) $= 1 \pmod{16}$. Therefore $B \equiv 9^{n'} - 1 \equiv 0 \pmod{16}$, hence n' is even. Let l' = 2l'', n' = 2n'', m = 2m'.

$$(A + B)/2 = ((4a^2 + p^2)^{n''})^2 = (b^{m'})^2 + (2^{m'(2+s)-1}c^{m'}p^{m'})^2.$$

Then we have $b^{m'} = x^2 - y^2$, $2^{m'(2+s)-1}c^{m'}b^{m'} = 2xy$, $(4a^2 + b^2)^{n''} = x^2 + b^2$ y^2 , where $x, y \in N$, with $(x, y) = 1, x > y, x \not\equiv y \pmod{2}$.

$$(A-B)/2 = ((4a^2 - p^2)^{1''})^2 = (b^{m'})^2 - (2^{m'(2+s)-1}c^{m'}p^{m'})^2.$$

Then we have $b^{m'} = z^2 + w^2$, $2^{m'(2+s)-1}c^{m'}p^{m'} = 2zw$, $(4a^2 - p^2)^{1''} = z^2 - 1$ w^2 , where $z, w \in \mathbb{N}$, with $(z, w) = 1, z > w, z \not\equiv w \pmod{2}$. Accordingly,

$$(3) x2 - y2 = z2 + w2 xy = zw.$$

But positive integers x, y, z, w satisfying (3) do not exist by the Lemma

which we prove later. Thus (2.3) does not occur.

Case (2.4). $A \equiv 1 + (-1)^{l'} \equiv 0 \pmod{4}$, hence l' is odd. (A - B)/2 $= (4a^2 - p^2)^{l'} = (2^{m'(2+s)-1}b^{m'})^2 - (c^{m'}p^{m'})^2$. So $(4)(2a + p)^{l'}(2a - p)^{l'} = (2^{m'(2+s)-1}b^{m'} + c^{m'}p^{m'})(2^{m'(2+s)-1}b^{m'} - c^{m'}p^{m'})$. Since 2a + p is prime, 2a - p is prime or 1, and $(2a + p, 2a - p) = (2^{m'(2+s)-1}b^{m'} + c^{m'}p^{m'}, 2^{m'(2+s)-1}b^{m'} - c^{m'}p^{m'}) = 1$, we have either of two cases:

(4.1)
$$2^{m'(2+s)-1}b^{m'} + c^{m'}p^{m'} = (4a^{2} - p^{2})^{l'},$$

$$2^{m'(2+s)-1}b^{m'} - c^{m'}p^{m'} = 1,$$

$$2^{m'(2+s)-1}b^{m'} + c^{m'}p^{m'} = (2a + p)^{l'},$$

$$2^{m'(2+s)-1}b^{m'} - c^{m'}p^{m'} = (2a - p)^{l'}.$$

Case (4.1). $2c^{m'}p^{m'} = (4a^2 - p^2)^{l'} - 1 \equiv 7^{l'} - 1 \equiv 6 \pmod{16}$, as l' is odd. Hence $c^{m'}p^{m'} \equiv 3 \pmod{8}$. Then $1 = 2^{m'(2+s)-1}b^{m'} - c^{m'}p^{m'} \equiv 2^{m'(2+s)-1}b^{m'} - 3 \pmod{8}$, that is, $2^{m'(2+s)-1}b^{m'} \equiv 4 \pmod{8}$. As b is odd and $m'(2+s)-1 \ge 2$, m'(2+S)-1=2, i.e. m'=1, s=1. Then (4.1) becomes

$$4b + cp = (2a + p)^{l'}(2a - p)^{l'},$$

 $4b - cp = 1.$

Then $8b - 1 = (2a + p)^{1}(2a - p)^{1}$. This is possible only when 2a - p = 1. Thus (4.1) occurs only in the case 2a - p = 1 which is a subcase of (4.2).

Case (4.2). $(2a + p)^{l'} - (2a - p)^{l'} = 2c^{m'}p^{m'}$, and l' is odd, then $2p^{l'} \equiv 0 \pmod{c}$. As (p, c) = (2, c) = 1, c = 1. Accordingly $b = a_0$, and (4.2) becomes

$$2^{m'(2+s)-1}a_0^{m'} + p^{m'} = (2a+p)^{l'},$$

$$2^{m'(2+s)-1}a_0^{m'} - p^{m'} = (2a-p)^{l'}.$$

Then $2^{m'(2+s)}a_0^{m'} = (2a+p)^{l'} + (2a-p)^{l'}$. Since l' is odd, $(2a+p)^{l'} + (2a-p)^{l'} = 4ad = 2^{2+s}a_0d$, where $d = (2a+p)^{l'-1} - (2a+p)^{l'-2}(2a-p) + \cdots + (2a-p)^{l'-1}$ is odd. Hence m' = 1. By (4.2) $2a+p = (2a+p)^{l'}$, hence l' = 1, then n' = 1. Thus (l, m, n) = (2,2,2).

Lemma. Let $x, y, z, w \in N$, (x, y) = (z, w) = 1, x > y, z > w, x > y $\not\equiv y \pmod{2}$, $z \not\equiv w \pmod{2}$. Then one of the following equations is not satisfied.

$$(3) x2 - y2 = z2 + w2 xy = zw.$$

Proof. Suppose that x, y, z, w satisfy (3). As $z \not\equiv w \pmod{2}$, $z^2 + w^2$ $\equiv 1 \pmod{4}$, that is, $x^2 - y^2 \equiv 1 \pmod{4}$, hence x is odd and y is even. Let (x, z) = a. Put x = ab, z = ac, so (b, c) = 1. By xy = zw, we can put y = cd, w = bd. As y is even, we can assume that c is even. (The proof is essentially the same for d being even.) By $x^2 - y^2 = z^2 + w^2$, $a^2(b^2 - c^2) =$ $d^{2}(b^{2}+c^{2})$. (x, y) = 1 and (b, c) = 1 mean (a, d) = 1 and $(b^{2}-c^{2}, b^{2}+c^{2})$ c^2) = 1. Hence $b^2 + c^2 = a^2$, $d^2 + c^2 = b^2$. As c is even, we have $b = x'^2 - y'^2$, c = 2x'y', $a = x'^2 + y'^2$ $d = z'^2 - w'^2$, c = 2z'w', $b = z'^2 + w'^2$,

$$b = x'^2 - y'^2$$
, $c = 2x'y'$, $a = x'^2 + y'^2$
 $d = z'^2 - w'^2$, $c = 2z'w'$, $b = z'^2 + w'^2$,

where $x', y', z', w', \in N$, with (x', y') = (z', w') = 1, x' > y', z' > w', $x' \neq y' \pmod{2}$, $z' \neq w' \pmod{2}$. Therefore

$$x'^{2} - y'^{2} = z'^{2} + w'^{2}$$

 $x'y' = z'w'$.

Hence x', y', z', w' satisfy (3). And $x \ge a > x'$, $y \ge c > y'$, $z \ge c \ge z'$, $w \ge b > w'$. This means that x, y, z, $w \in N$ satisfying (3) become infinitely small, which is a contradiction.

Theorem 3. Let a be odd, y = p odd prime, and $p \equiv 3 \pmod{4}$ in (1). If a prime divisor q of a satisfies $q \equiv 1 \pmod{4}$ and

$$\left(\frac{p}{q}\right) = -1,$$

then (l, m, n) = (2,2,2).

Proof. Let r be a primitive root modulo q. Then r has order q-1 mod q. Let $p \equiv r^t \pmod{q}$. Since

$$-1 = \left(\frac{p}{q}\right) = \left(\frac{r}{q}\right)^t,$$

t is odd. Then order of $p \mod q = \operatorname{order}$ of $r^t \mod q = (q-1)/(t, q-1) \equiv 0 \pmod 4$. From (1) $(-p^2)^l \equiv p^{2n} \pmod q$, so $p^{2|l-n|} \equiv 1 \pmod q$. Hence order of $p \mod q$ divides 2(l-n). So 2 divides l-n. Since l is even, n is even. By Prop.1, $m \neq 1$. Thus (l, m, n) = (2, 2, 2) from Theorem 1.

Remark. Thus we could prove that the conjecture of Jeśmanowicz holds in special cases as shown in Theorems 1-3. We could prove also that this conjecture holds in case y=3, a is odd and (i) $a\equiv 0,2,3,4\pmod{7}$, $a\equiv 4,5\pmod{9}$, $a\equiv 4\pmod{11}$, $a\equiv 0,10\pmod{13}$, or $a\equiv 6,7,11\pmod{17}$, or (ii) a prime divisor q of a satisfies $q\equiv 1\pmod{3}$, and the order of $a\pmod{4}$ is divisible by a. (For all primes a0 is divisible by a1.) But we omit here the detailed proof which runs in a similar way as in our proof of Theorems a1, a2 respectively.

References

- [1] L. Jeśmanowicz: Kilka uwag o liczbach pitagorejwkich (Some remarks on Pythagorean numbers). Wiadom. Mat., 1, 196-202 (1956).
- [2] N. Terai: The diophantine equation $x^2 + q^m = p^n$. Acat Arith., **LXIII.4**, 351-358 (1993).