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57. On a Conjecture on Pythagorean Numbers

By Kei TAKAKUWA and You ASAEDA

Department of Mathematics, Gakushuin University
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1993)

L. Jesmanowicz [1] conjectured that if #, v, w are Pythagorean numbers,
i.e. positive integers with (, v) = (v, w) = (w, ) = 1 satisfying u° + v’
= w” then the diophantine equation on I, m, n € N

w+ " =w"
has the only solution (I, m, n) = (2,2,2). (Cf. [2]) Since u, v, w are
Pythagorean numbers, we have
u=2x"—y° v=2zy, w=2"+4°

where z, y € N, with (z, ) =1, 2> y, x # y (mod 2).

We shall consider here the following diophantine equation on [, m, n € N
(1) (4a® — y»' + (day™ = @a" + y")"
where a, y € N with (a, y) =1, 2a > y, y = 3 (mod 4), whence [ is even,
which is easily seen considering (1) mod 4.

Proposition 1. If a is odd, then m = n (mod 2) and m # 1 S n is even.

Proof. From (1) we have (4day)” = (2y*)" (mod4a® — y%). By the

assumptions on a, ¥,
2m _m m n_ 2n

()= - (2 - v

*
where (?> is the Jacobi symbol. Hence m = # (mod 2). If # is even, m # 1.

If # is odd, (4a”+ y»" =5 (mod 8) and (4a’ — y*)' = 1 (mod 8). Then
we have (4ay)™ = 4 (mod 8) from (1), hence m = 1.

Proposition 2. If a is even, then m is even.

Proof From (1) we have (day)™ = (2y°)" (mod 44’ — y°). By the
assumptions on &, ¥,

22mamym 2ny2n
() =com=(21) =1
4a" — y 4a” — y
Hence m is even.

Proposition 3. If a is even and y = 3 (mod 8), then n is even.

Proof. By Prop. 2, m is even. From (1) we have 1 = 9” (mod 16) Hence
7 is even.

Theorem 1. Let a be odd, y = p odd prime, and p = 3 (mod 4) in (1). If
mF* 1, then (I, m, n) = (2,2,2).

Proof. By Prop.1, n is even. Put I = 2!, n = 2n’, and (4d’ +p2)"' +
(4a’ — )" = A, Ua®+p" — @d® —p»" = B. Clearly (A4, B) =2.
From (1) we have
(2) 27a™p" = AB.

Assume A =0 (modp), then we have (2a)* + (22)* = 0 (modp), so
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2a)*" ™" = — 1 (mod ). Then (2a) """ has order 4 mod p. This contra-

dicts the assumption p = 3 (mod 4). Therefore B = 0 (mod p).
Now there are two possibilities on choice of A, B in (2):

(2.1) A=2p", B = 2" c"p"
(2.2) A=2""", B=2c"p",
where @ = be, (b, ¢) = 1. )
Case (21). B=1—(—1)" =0 (mod4), hence I’ is even. B =

- (= 2])2)" = 2”71"p™ (mod 44’ + p%). By the assumptions on a, P,
22m—1 m

2\ 1" m
) =1 ) =
4a" + p 4a” + p
which is a contradiction. Thus (2.1) does not occur.

Case 2.2). A=1+ (—1)" =0 (mod4), hence I’ is odd. A =5" +
3" = 0 (mod8). As I is odd, # is odd. A = (2p)” = 2¢"p™ (mod 4a° —
$°). By the assumptions on a, p.

2\n’ m,m
<7(22p) 2> =—-1= (—Zf 2 2> =— (= D"
4a” — p 4a" — p
Therefore m is even. Assume m = 4. (A + B) /2 = (4a° + p?)" = 2" "
+ ¢”p™. Then 5% =1 (mod 8) as ¢, p are odd. Since #’ is odd, 4 = 0 (mod 8),
which is a contradiction, hence m = 2. Then A = (4a” + )" + (a’* — pO"
= 8b* < 84® = (4a® + p*) + (4a® — p°). Therefore w =1 =1. Thus
, m, n) = (2,2,2).

Theorem 2. Let a be even, y = p odd prime, and p = 3 (mod 8) in (1). If
2a + p is prime and 2a — p is prime or 1, then (I, m, n) = (2,2,2).

Proof. By Props. 2, 3, both m and # are even. Now let [/, #', A and B
be as the proof of Theorem 1, then (4, B) = 2 and B = 0 (mod p). Let a =
2°a, (s 2 1), (2, a,) =1, then there are two possibilities on choice of A, B
in (2):

(23) A — 2bm’ B —_ 2m(2+s)—lcmpm’
(2.4) A — 2m(2+s)—1bm’ B= zcmpm’
where a, = bc, (b, 0) = 1.

Case (2.3). B=1— (—1)" =0 (mod4), hence !’ is even, then (4a”
— p»" = 1(mod 16). Therefore B =9" — 1 = 0 (mod 16), hence #  is
even. Let I’ = 21", w = 2n”", m = 2w/,

(A+ B)/2 = ((4a" + p)")* = ™) + @727 p™)%,
Then we have 8™ = 2% — y%, 2" ® " p™ = 22y, 4a” + p)" = 2° +
y’, wherez, y € N, with (z, ) = 1,2 > y, £ # y (mod 2).

(A4 — B)/2 = ((4a° — pz)l")z = (™) — (zm’(2+s)—lcm’pm’)2.
Then we have b = 2%+ w®, 2”97 ™™ = 22w, (4a® — pH)" = 2 —
w’ where z, w € N, with (z, w) = 1, z > w, z % w (mod 2). Accordingly,
(3) 2=y =2L+w

XYy = zw.

But positive integers x, y, 2z, w satisfying (3) do not exist by the Lemma
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which we prove later. Thus (2.3) fioes not occur.
Case 2.4), A =1+ (= 1)" =0 (mod 4), hence I is odd. (4 — B) /2
(4a p ) (zm (24+8)— lb ) ( p ) So

@) (2a+ ) (2a — p) = @ T L Wy g eIy "y
Since 2a + p is prime, 2a — p is prlm,e or 1, and (2a +p, 2a — p) =
(2m (2+s)—1bm + Cmpm , m’ (2+s)— lb —¢ p ) _ 1 we have either of two
cases: ) , o ,
(4.1) 2 EITIY 4 ™ = (4a” — pH",

2m'(2+s)~1bm’ _ Cm/pm/ — 1
(4.2) 2T & P = Qa+ ),

m’(2+8)—1,m’
2 b

_ cm’pm’ _ (20_ p)l'

Case (4.1). 2¢"p" =Uad"—p) ' —1=7"-1=6 (mod 16), as I’
is odd. Hence ¢”»”™ =3 (mod8). Then 1= 2"*"7p" — ™ p" =
2" 9™ — 3 (mod 8), that is, 2" " 7'6™ = 4(mod 8). As b is odd and
m2+s)—1=22,m@2+S) —1=2 ie m"=1,s=1. Then (4.1) be-
comes

4b+cp= QCa+p"Ca—p’,

4b — cp = 1.
Then 80— 1= (2a + p)" (2a — )" This is possible only when 2a — p = 1.
Thus (4.1) occurs only in the case 2a — p = 1 which is a subcase of (4.2).

Case (42). Qa+p" — @a—p)" =2c"p", and I' is odd, then

2p’ =0 (modc). As (p,¢) = (2,¢) =1, c=1. Accordingly b = a, and
(4.2) becomes

2m’(z+s)—la(r)n’ +pm’ — (2(1 +ﬁ)I’,

m’ (2+s)—1 _m’
2

‘ag” ~ P = (2a~ »’.
Then 2m @00t = Qa+p)" + 2a—p)". Since I’ is odd, (2a + »'+
(2a—p)’ = 4ad = 2""a,d, where d= Qa+ )" — Qa+p" 2a— p)
+ 4+ 2a— " is odd. Hence m’ = 1. By (4.2) 2a 4+ p = a + p)",
hence I’ =1, then #" = 1. Thus (I, m, n) = (2,2,2).

Lemma. Let x,y,z, wEN, x,y =G w =1, x>y, z>w,x
# y (mod 2), z # w (mod 2). Then one of the following equations is not sa-
tisfied.

(3) xz—y2=zz+w2
Ty = zZw.

Proof. Suppose that x, y, z, w satisfy (3). As z # w (mod 2), z° + w’
= 1 (mod 4), that is, z° — y* = 1 (mod 4), hence x is odd and Y is even.
Let (x, 2) = a. Put x = ab, z = ac, so (b, ¢) = 1. By xy = zw, we can put
Yy = cd, w=bd. As y is even, we can assume that c 1s even (The proof is
essent1ally the same for d being even.) By x? = y =2+ w’, d*(b* — ¢ ) =
d(b + A, (z, y)—land(b c)——lmean(a d)—land(b - p+
¢ = 1. Hence b* + ¢* —a d + ¢ = b®. As ¢ is even, we have

b=x?—y"? c=22y, a=z2"+y"
d=2"—w? c¢=27w, b=27"+ w?,
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where x’,y’, 2/, w’, €N, with (&', y) = @, w)=1,2" >y, 2 > w,
x’ # y’ (mod 2), 22 # w’ (mod 2). Therefore
=y’ =2+ w?
'y =zZw.
Hence x’/, y’, 2/, w satisfy (3). And x=2a>x',y=2c>y,z2=2c=212,
w = b > w’. This means that x, y, z, w € N satisfying (3) become infinitely
small, which is a contradiction.
Theorem 3. Let a be odd, y = p odd prime, and p = 3 (mod 4) in (1). If
a prime divisor q of a satisfies ¢ = 1 (mod 4) and

E) - _
<q =-1
then (I, m, n) = (2,2,2).

Proof. Let # be a primitive root modulo q. Then # has order ¢ — 1 mod
q. Let p = 7' (mod ¢). Since

=)= ()
1 <(I q/’

t is odd. Then order of p mod g = order of ' mod ¢ = (g — 1) /(t, ¢ —
1) = 0 (mod4). From (1) (— p)' =" (mod g, so p*"™ =1 (mod g).
Hence order of p mod ¢ divides 2(I — %). So 2 divides I — n. Since [ is even,
n is even. By Prop.1, m # 1. Thus (I, m, n) = (2,2,2) from Theorem 1.

Remark. Thus we could prove that the conjecture of JeSmanowicz
holds in special cases as shown in Theorems 1-3. We could prove also that
this conjecture holds in case ¥y = 3, @ is odd and (i) @ = 0,2,3,4 (mod 7),
a= 45 mod9), a =4 (mod11), a = 0,10 (mod 13), or a = 6,7,11 (mod
17), or (ii) a prime divisor ¢ of a satisfies ¢ = 1 (mod 3), and the order of 3
mod ¢ is divisible by 3. (For all primes ¢ = 1 (mod 3), 7 < ¢ < 199 except
61,67,103,151,193, the order of 3mod g is divisible by 3.) But we omit
here the detailed proof which runs in a similar way as in our proof of
Theorems 1, 3 respectively.
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