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1. Introduction. Let p: G— GL(V (o)) be a finite dimensional ration-
al representation of a complex reductive algebraic group G over the field C
of complex numbers, where V (p) denotes the representation space. A repre-
sentation ¢ : H— GL(V (¢)) of an algebraic group H is said to be a finite
extension of o or of (o0, G), if V(¢) = V(o) and there is a morphism
¢ : G— H such that p = ¢ ° ¢ and the index of the canonical image of G in
H is finite. Moreover if (¢, H) is coregular, i.e., if its associated quotient
variety V (¢) /H = Spec(CL¢l") is an affine space, then (¢, H) or H is
said to be a finite coregular extension of p and we also say that o admits a fi-
nite coregular extension, where CI[ ¢] denotes the affine coordinate ring of
V (). A finite extension (¢, H) of p is said to be central, if H is generated
by the union of G and the centralizer Z4(G) of G in H. According to [7], in
1991, D. Shmel’kin has classified all finite coregular extensions of irreduci-
ble representations of connected complex simple algebraic groups. Recently,
in [7], D. 1. Panyushev has defined finite coregular extensions and showed
that the associated quotient varieties of the representations of connected
semisimple algebraic groups admitting finite coregular extensions are com-
plete intersections. This implies that D. Shmel’kin’s classification is a priori
related to the author’s one in [5] (cf.[7]).

Hereafter G stands for a connected complex algebraic torus. Simplicial
torus embeddings are defined in [3]. The purpose of this paper is to show

Theorem 1.1. (o0, G) adwmits a finite central coregular extension if and
only if the rational convex polyhedral cone associated with the torus embedding
V (o) /G is simplicial.

As an easy consequence of this theorem, we obtain the following crite-
rion: Let {Y},...,Y,} be a basis of V(o) on which o(G) is a diagonal sub-
group of GL,(C). Let I denote a set consisting of all minimal subsets A of
{1,...,n} such that nonzero weights in each subspace 2,., CY, generate a

*)  The author would like to express his sincere gratitude to Prof. D. I

Panyushev for sending [7] at late 1991 and also to Keio University for offering him an
annual grant from April 1991 to March 1992.
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positive half plane containing the origin.
Corollary 1.2. (0, G) admits a finite central coregular extension if and

only if Uger ©® 2A forall A € T. Q.E.D.

0#A

In [6] we have determined finite (but may not be central) coregular ex-
tensions of a connected algebraic torus of rank one and, as an application,
have announced a refinement of Theorem 2 of [2]. There exist representa-
tions of algebraic tori which admit finite coregular extensions and do not
admit finite central ones. In the preparation of the proof, the positively
graded algebras whose Segre products are polynomial rings are determined.
Our method shall be used also in a forthcommg paper of the author.

2. The Segre products. Let A' = EB,,O s» © = 1,2, be noetherian posi-
tively graded algebras defined over A A = C of dimension = 1. We de-
note by A' #cA® the Segre product @,___0 (A ®CA) of graded algebras A’,
¢ = 1,2. The multiplicative group C* acts on A’ , 1= 1 2, respectively as
C algebra automorphlsms in such a way that, for § = 0, each element in
A (resp. A) is of welght v(])(resp u(— ])) where v denotes an isomorph-
ism Z— Hom(C¥, C*). Then A' #c4° = (4' ® 4% ",

Lemma 2.1. Let f; be a homogeneous element of A' (1 = 1,2). IfFfi®f, is
A #cA’-regular, thenht A'f, = 1.

Proof. We express nil A'=8, N ---NY, N ---NB, for distinct
minimal prime divisors B, of {0} in A'. We assume that f, € 8, N --- N B,,
and f; € B, m < i < n). Choose a homogeneous element # from B,,,, N
N B, such that & é% (1 <j<m). Let a, b be natural numbers which
satisfy h° ® f, € A #CA Then (h° ® f,}) - (f, ® f,) € nil(A" #cA?). From
this we immediately derive a contradiction. Q.E.D.

- Lemma 2.2%). If A' #cA® is a polynomial ring over C, them ome of
A'(i = 1,2) is of dimension one. ‘

Proof. Deny the assertion. We can choose homogeneous elements f; € A
such that f; @ f, is a member of a regular system of homogeneous parameters
of A" #cA% Since the functor - #cA® is exact, we have A" #cA” /(A'Yf, #cA?)
= (Al/Alfl) #cA®. Using Theorem 4.2.3 of [1] and Lemma 2.1, we see that
(A /Alfl) #cA® is a polynomial ring over C of dimension dimA' +
dim A® — 2 and Alf1 #cA® = GASIAE (A #cAY). By induction on dimension,
we need to treat only the case where dim A' = dim A*> = 2. Then A' 1"%L‘CA2 =
Clx; ® y,, 2, ® y,, 23 @ y,] for some homogeneous z; €A' and y, € A% By
the observatlon stated as above, we see Axl #cA® = = (@, Quy) - (A" #cAY
and (A/A'r) #cA® = C[.ZJZ X y,, Z3 X y3] where ; ® y; is the canonical
image of x; ® y,; in (A #CA /(A x, #CA). Since the canonical image of
(2, ® ¢,, ;@ y;) forms a regular system of homogeneous parameters of
A #c A /Azyl), (1, ¥,) is a system of homogeneous parameters of A®(cf.
Lemma 2.1). We can choose natural numbers d, e such that xld® Y, = w-
(x; @ y,) for some w € Al #CAZ. Because x; is not nilpotent, we get a spe-
cialization g :A'— C satisfying #(x,) + 0 and apply £ ® 1 to A' Q¢ A%

*)

Although this was shown in [6], we give the proof for reader’s convenience.
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Consequently we see that y; € ylAz, which is a contradiction. Q.E.D.

~ Furthermore, we suppose that one of graded algebras in the set
{A'|dim A' = 1} is a normal domain, unless it is empty. For each i, let ¢;
denote the largest common divisor of integers in the unique minimal set of
generators of the additive subsemigroup of Z generated by {j € ZIA;~
# {0}}.

Proposition 2.3. A’ #CA is a polynomwl ring over C if and only if both
gmded subalgebras Dje z,, A;, DB, Ze, A2, are polynomial rings over C and ome of
A (i = 1,2) is of dimension one.

Proof. By Lemma 2.2 we may suppose that Alis a graded polynomial
ring C[X] of dimension one. Using the action of C we see that
(A )Ker(C*-~AutA2) — @;ezezA and (A )Ker(c*ﬁAutA) — @;eze A,, which imply
A #cA* = (D ez, A ) #c(DBjepe, A) and ®1eZezA is a graded polynomial
ring. Let {f}, .. fm} be a minimal system of homogeneous generators of
@,EZelA as a C—algebra Then {Xdey‘/e‘@)fl, .. Xdegf”'/e‘@f} is a
minimal system of homogeneous generators of A’ #cA = A #C(@JGZe,A)
Thus the assertion follows from this, because dim A' #cA = dim A>. QE.D.

3. Graded automorphisms of C[p]°. We regard any matrix in GL,(C)
as an automorphism of V (o) through the basis {Y},...,Y,} defined in Sect.
1 and regard CLpl and Clpl ¢ as Z"-graded C-algebras by the basis
{X,,...,X,) of V(0)* dual to that basis. We may assume that {i| C[o]X; N
Clpl® + {0}} = {1,...,n}. Let U be the subspace of V (o) generated by
{y,...,Y,}.

Lemma 3.1. Let 6 be a C-algebra automorphism of CLo1° preserving its
Z"-gradation. Then there is a matrix & in GL(U) which induces ¢ and is di-
agonal on {Y,,...,Y,}.

Proof. Let a set {M,,...,M;} of monomials of {X,...,X,} be a minimal
system of Z"-homogeneous generators of C[p]°. Put M = Z!_, Clpl° (M, —
o(M)/M). Then

@) = 3 Clola, — 1) = (

which is a max1mal 1deal. Hence we can choose such a maximal ideal M of
CLU] as M N Clpl® = M and express as N = X1, CLUI (X, — b)) for
some b, € C. Let & be an element of GL(U) defmed by & (Y;) = b; Y
A1 <i<wn). We express M; —o(M)/M,; = Z, 1f,,(X b) for 1 <4
< !l and some f;; € C[U]. Then 6(M;) — o (M))/M,; = Z, 1 0(fbi(X;, — 1)
and so 6 (M)/M;, = o(M;)/M, Consequently & is the transformation
desired in the assertion. Q.E.D.

Proposition 3.2. Suppose that L is a finite subgroup of Autc_,;, (Clpl G)
which preserves Z" -gradation. Then there is a diagonal subgroup L of GL,(C)
such that L 2 0(G), Im(L— Autc_,,, (Clo1%)) = L and [L: p(G)]1 = | L|.

Proof. Let 0 be an element of L and # denote the order of g. Let & be a
diagonal element in GL(U) inducing o and let K be the Zariski closure of
the subgroup of GL(U) generated by the set p(G) |, U {&"} of restrlctlons
Clearly K is reductive. Moreover C[U]" = CLU = ©@w?> = Clpl°. Let

S Clul, — 1) n Clol’,

i=1
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be a point of U associated to X7, CLU] (X; — 1). Then 7y (myo(x)) =
Gx S Kx = nvc(n'vc(.r)) where 7, denotes the quotient map U— U/G,
because Gx is the generic closed G-orbit. From these inclusions, it follows
that 3 = |, for some ¢ € G. Then we choose an element # from G in such
a way that #“ = 7. We define a diagonal element & in GL,(C) which extends
0 and 5(Y) =7(Y)(®n <j<mn). Then " € o(G). The assertion follows

easily from this observation, because L is abelian. Q.E.D.
4. Proof of Theorem 1.1. Let V (o), denote the subspace of V (p) con-
sisting of all vectors of a weight x of G. Let {Xp- .»Xm) be a set consisting

of all distinct weights of G which appear in V (o).

Affine simplicial toric singularities are quotient singularities of origins
of affine spaces by finite diagonal groups (cf. [3]). Thus the “if” part of
Theorem 1.1 follows immediately from Proposition 3.2. So we suppose that
the representation p of G admits a finite central coregular extension (¢, H).
Let ¢ : G— H be a morphism such that o = ¢ ° ¢. Then, since Z4(G) =
H, ¢ induces a subrepresentatlon ¢,: H— GL(V (¢),). We may suppose
that = ', V(¢)” = {0}, G = ¢(G) and ¢ is injective.

Lemma 4.1. There is a finite subgroup N of H generated by
pseudo-reflections in GL(V (¢)) such that V (¢)/H = (V (¢)/G)/N.

Proof. First, suppose that dim V (¢)/G =1, ie., Clol¢ = C[M] for
some monomial M. Then G is identified with the set consisting of all diagon-
al matrices o in GL,(C) satisfying (M) = M. By this observation and
Proposition 3.2, we can choose an element 7 from H which is a
pseudo-reflection in GL(V (¢)) in such a way that Clel? = CIM]1¢”. Then
N = < 7 is the group desired in the assertion of this lemma.

Suppose that dim V (¢)/G = 2. By purity of branch loci, we see that
Im (H— Aut(V (¢)/ G)) is generated by {c € H| (6 — 1) (C[(p]G) < B for
a prime ideal B of C[¢]€ of height one}. Then Im(H — Aut(V (¢)/G)) is
generated by the image of U ,cy(,)/6\zyH, and consequently it is generated
by the image of U, H, where m denotes the quotient map V (¢) — V (¢)/ G
and & runs through the set of all closed G-orbits in V(go)\n:_l(n: (0)). For
such an element §, by slice étale theorem [4], the slice representation (¢,
H) of (¢, H) at & is coregular, and moreover (¢, H;) is coregular, because
the adjoint representation of H is trivial. Since Zﬂe(Ge) H,, we have
Zy, (He) = HE Thus we inductively see that there is -a finite subgroup Nt
of H, generated by pseudo-reflections in GL(V (¢)) such that (V (¢)/H;)/
Nf= V (¢)/Hy. Then (V(9)/G)/N* = (V(¢)/H{)/G)/N* = ((V ()/
He)/N )/ G = (V(p)/H)/G = (V(¢)/G)/H,, which implies Im(N¢—
Aut(V (¢)/G)) = Im(H,— Aut(V (¢)/G)). Since H/G is finite, for some
k we have finite subgroups L, (1 <¢< k) of H generated by pseudo-
reflections in GL(V (¢)) and V(p)/H= V(9)/G - < U, L, . Since the
factor group (¢,,(G - < U,,lL >) N SL(V (¢), N/, (G) N SL(V (¢),))
is f1n1te ©,,(G - <U,_,1L >)n SL(V (¢),) is also finite. Thus N =
< U, _ L, is the group desired in the assertion of this lemma. Q.E.D.

Let N be a subgroup stated in Lemma 4.1. Then N=N, X -+ X N,



No. 9] Tori Admitting Central Coregular Extensions 277

for some finite subgroups N, generated by pseudo-reflections in GL(V(p)x‘)
Clearly ¢, (N)) = 1(i # j). We may assume that H = G- N and all x,’s are
nontrivial. Put I = {1,...,m} and let {f,, |1 <j <} bea regular system
of homogeneous parameters of CI (px] ‘. For a monomial M = H,,f,, of
{fil1<i<m,1<j;<mn}in C[go] let SuppM = {(4, j) | a;; > 0} and,
moreover, put suppM = {i| a;; > 0 for some j7}.
First we suppose that, for some k, the canonical map
(V@iern ¢2) /N- Ker(x))°— V(®@ienw ¢x)/ H

is surjective and prove the assertion by induction on dim G. Put B =
Cl®cnm ¢,] and let {g,...,g} be a minimal (may be empty) system of
homogeneous generators of BY. Obviously this system can be extended to a
minimal system of homogeneous generators of BYEe™ e naturally define
the non-negative gradations on C[ ¢, ] and B" ““"*/(Z,,, ) )
which are induced by the action of G/Ker(xk) = C* and preserved by the
action of N such that

Clo, )" #c (B"“‘“’"‘/(Zt: BYKerte, )) = C[¢]"/<Ztl C[qo]”-g,.).

j=1
From this isomorphism we infer that ht(z:,,.1 BY e . © &) =t and that

Clo,,] Ne o (BYRei/(Zi_ BYEe™ . g)) is a polynomial ring, which im-
plies that CLf,] #¢ (BY ¥ /(2] | BV Kerxe. - g;)) is also a polynomial ring.
By Proposition 2.3, we see that (@,e,\{k, Opr Ker(xk)o) admits a finite cen-
tral coregular extension and hence by induction hypothesis we can choose a
Kerx, . e
system {x,,...,x,} of homogeneous parameters of B consisting of mono-
mials in B. We may assume Clz,, .. .,z]"™ = Clz, . ..,x,] for some
t' < s. Since # = n’ and each g;(1 < { < ¢) is integral over Clxz,,...,z,],
the following inequalities hold ;
s>t = ht(ﬁ BX " z) 2 ht(Z BV ) = 1,
j=1 j=1
On the other hand, by Lemma 2.2, we see that one of dim BY '¥¢™ — ¢ and
dim V (¢,,) is equal to 1. Since the proof is similar, one needs to treat only
the case where dim V(gox) > 1. Then we must have ' = t=s — 1. We
see that C[(p] is simplicial as an affine semigroup ring, because it is integ-
ral over (Clo,,] ®cClx,,... ,z]) €K
Next we suppose that
44 (@/et\m (ox,)/Ker(x ) ’N)G -V (@jez\m go,“)/H

are not surjective for all 1 < ¢ < m. Fix an arbitrary index s with 1 <'s
< m and let {M,,...,M,} be a minimal system of homogeneous generators of
ClD cn i 04, NeKetts consisting of monomials of {f,;}. We may assume that
{M,,...,M,} is a subset of {M,,...,M} consisting of M, with minimal
SuppM,. Then C[Ml,. ..M is mtegral over C[M,,...,M,]. We may
assume that (C[ gox] ®C C[ M,] )¥%exs = C[ M]G/Ke”‘s. Since C[ M, |
1 < i<, SuppM, < SuppM,] = CIf;| G, j) € SuppM,1**™ and it is in-
tegral over C[M,], this algebra coinsides w1th C[M,]. Hence a minimal sys-
tem of homogeneous generators of (CL gox] Qe C[M])G/Kerx‘ can be ex-
tended to a regular system of homogeneous parameters of C|[ (0] Let
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{L,,...,L,} be a unique regular system of homogeneous parameters of
Clel? con51st1ng o£/11{nonom1als of {f;;}. We easily have dlm(C;([ <px] Rc
clMm, ... M1 =dimV(p) +dmCLD ,cpneo,]  *—1=

dim V (¢x,) + dim C[ D0 (px]H. By this and dim(C[ <p,] Rc
CLM,])%%*s = dim V (¢, ), we infer that {L,|s € suppL;} is a regular
system of homogeneous parameters of (Clg,, R ®c C[M,])C/%erxs, Moreover
M, is a unique element M, in {M,, . . M,} such that (CI[ (p,(s] Rc
CIM]) % = CIM|] G/Ker"‘ On the other hand, suppose that #, > 1 for
some u € suppM,. Let M,, be a monomial of {f,;|1 <j< )} and M, a
monomial of {f;|i# #} which satisfy M, = M, M,, Since M, €
Clo, ] ;e and #, > 1, we can choose a monomial M, of {f;|1<j<n}
such that an irreducible divisor of M;, does not divide M, in Clg,, 1V and
degM,, is a divisor of degM Then MIM desil,/desiy, ClD jenis qo,(,] Kerxs
and (C[(p,(] Q¢ CIM, M"“Ml/de"”“]) * C[M, Mdeng/degM“]G Thus a mul-
tiple of M, is divisible by M, in Clo,, 1¥, which is a contradiction. We must
have dim V (¢,) = 1 for any j € I, where I, = suppM,. Moving s, we con-
sequently define (nonempty) subsets I; as above for each 1 < s < m. Since
{s} U I, = U jcqyppr, SUPPL;, we see the fact that I, = s’ implies the fact
that Iy @ s. Thus U ..., I, =1{1,...,m}, and the associated cone of
V (0)/ G is simplicial. The proof of Theorem 1.1 has just been completed.
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