16. A Subadjunction Formula and Moishezon Fourfolds Homeomorphic to P⁴_c

By Iku NAKAMURA
Department of Mathematics, Hokkaido University

(Communicated by Kunihiko Kodaira, M. J. A., March 12, 1991)

§ 0. Introduction. The purpose of the present paper is to report some partial solutions to the following conjectures. Details [5] will appear elsewhere.

Conjecture MP_n . Any Moishezon complex manifold homeomorphic to P_c^n is isomorphic to P_c^n .

Conjecture DP_n . Any complex analytic (global) deformation of P_c^n is isomorphic to P_c^n .

Conjecture MP_n has been settled by Hirzebruch-Kodaira [1] and Yau [10] when the manifold under consideration is *projective or Kählerian*.

Recently Kollár [2] and the author [3] solved (MP_3) in the affirmative, each supplementing the other. Peternell [6] [7] also asserts (MP_3) .

- (0.1) Theorem [2] [3]. Any Moishezon threefold homeomorphic to P_C^3 is isomorphic to P_C^3 .
- (0.2) Theorem. Let X be a Moishezon manifold of dimension n. Assume that there is a line bundle L on X such that $c_1(X) = dc_1(L)$ ($d \ge n+1$), $h^0(X, O_X(L)) \ge n+1$, and $\kappa(L) = n$. If a complete intersection of general (n-1)-members of the complete linear system |L| is nonempty outside the base locus Bs |L|, then X is isomorphic to P_n^n .
- (0.3) Theorem. Let X be a Moishezon manifold homeomorphic to $P_{\mathcal{C}}^n$, and L a line bundle on X with $L^n=1$. Assume $h^0(X, O_X(L)) \geq n+1$. If a complete intersection of general (n-1)-members of |L| is nonempty outside Bs |L|, then X is isomorphic to $P_{\mathcal{C}}^n$.
- (0.4) Theorem. Let X be a Moishezon fourfold, and L a line bundle on X. Assume that $\operatorname{Pic} X = ZL$, $c_1(X) = dc_1(L)$ $(d \ge 5)$ and $h^0(X, O_X(L)) \ge 5$. Then X is isomorphic to P_c^4 .
- (0.5) Theorem. Let X be a Moishezon fourfold homeomorphic to P_c^4 , and L a line bundle on X with $L^4=1$. Assume $h^0(X, O_X(L)) \geq 3$. Then X is isomorphic to P_c^4 .
- (0.6) Corollary. Any complex analytic (global) deformation of P_c^4 is isomorphic to P_c^4 .
- § 1. A complete intersection l and a subadjunction formula. (1.1) Let X be a compact complex manifold of dimension n, a line bundle L on X with $h^{0}(X, O_{X}(L)) \geq n-1$. Let V be a linear subspace of $H^{0}(X, L)$ of dimension n-1, $l:=l_{V}$ a scheme-theoretic complete intersection associated with V. More precisely, the ideal sheaf of O_{X} defining l is given by $I_{l} = \sum_{s \in V} sO_{X}$.

- (1.2) Lemma. Assume $c_1(X) = dc_1(L)$. Let C be an irreducible curve-component of l_v along which l_v is reduced generically. If $d \ge n+1$, and if $LC \ge 1$, then d = n+1, LC = 1, $C \simeq P^1$, $N_{C/X} \simeq O_c(1)^{\oplus (n-1)}$ and C is a connected component of l_v . Moreover if C is not contained in Bs |L|, then $C \cap Bs |L|$ consists of at most one point.
- (1.3) Theorem (Subadjunction formula). Let X be a compact complex manifold of dimension n, D_i a reduced irreducible divisor of X $(1 \le i \le m)$. Assume that the scheme-theoretic complete intersection $\tau = D_1 \cap \cdots \cap D_m$ has an irreducible component $Z = Z_{\text{red}}$ of dimension n-m along which τ is reduced generically. Let $\nu \colon Y \to Z$ be the normalization of Z. Then there exists an effective Weil divisor Δ of Y such that
 - (1.3.1) $K_Y = \nu^* (K_X + D_1 + \cdots + D_m) \Delta$,
- (1.3.2) supp $(\nu_* \Delta)$ is the union of all the Weil divisors of Z whose supports are contained in either Sing Z or one of the irreducible components of τ other than Z.

The condition (1.3.2) implies that $supp \Delta = \phi$ if and only if Z is smooth in codimension one and moreover Z intersect the irreducible components of τ other than Z along some subvarieties of at most (n-m-2) dimension.

- § 2. Proof of (0.5). (2.1) Lemma. Under the assumptions in (0.5), let D and D' be distinct members of |L|, τ the scheme-theoretic complete intersection $D \cap D'$. Then we have
 - $(2.1.1) \quad \operatorname{Pic} X = ZL, K_X \simeq -5L,$
 - $(2.1.2) \quad H^0(\tau, O_{\tau}) \simeq C,$
 - $(2.1.3) |L|_{\tau} = |L_{\tau}|.$
- (2.2) Lemma. Let D and D' be general members of |L|, and $\tau = D \cap D'$. Let $Z = Z_{red}$ be an irreducible component of τ along which τ is reduced generically. If $Z \not\subset Bs |L|$, then $\tau \simeq Z \simeq P^2$ and $L_{\tau} \simeq O_{P^2}(1)$.
- *Proof.* Let $\nu: Y \to Z$ be the normalization of Z, $f: S \to Y$ the minimal resolution of Y and let $g = \nu \cdot f$. Then there exist by (1.3) an effective Weil divisor Δ on Y, effective Cartier divisors E and G on S with no common components such that the canonical sheaves K_Y and K_S are given by

$$K_Y = O_Y(-3\nu^*L - \Delta), \qquad K_S = O_S(-3g^*L - E - G)$$
 with $f_*(E) = \Delta, f_*(G) = 0$. Let $\Sigma := f^{-1}(\Delta) \cup g^{-1}(\operatorname{Sing} Z)$.

Since $h^0(X,L) \ge 3$ and $Z \not\subset \operatorname{Bs} |L|$, g^*L is effective. By $P_m(S) = 0$, $S \simeq P^2$ or S is ruled. Assume that S is ruled. Let $\pi : S \to W$ be a morphism of S onto a curve W with general fiber $F \simeq P^1$. Let $H \in g^*|L|$. We note that $E_{\operatorname{red}} + G_{\operatorname{red}} \subset H_{\operatorname{red}}$ for general D and D'. We also have,

$$-2 = K_s F + F^2 = K_s F = -(3H + E + G)F$$
.

It follows that HF=0, (E+G)F=2. However this contradicts $E_{\rm red}+G_{\rm red}\subset H_{\rm red}$. Therefore $S\simeq Y\simeq P^2$ and G=0. Since $H_{\rm red}\geq E_{\rm red}$ and $K_S=-3H-E$, we see that $O_S(H)\simeq O_{P^2}(1)$, E=0. Since E=0, Z has by (1.3) at worst isolated singularities.

There exists $D'' \in |L|$ such that $g^*(Z \cap D'') = H$ by the choice of H. Let $l = D \cap D' \cap D''$ be a scheme-theoretic complete intersection, and $C = g(H)_{red}$.

Since $g^*D''=H\simeq P^1$ and g is an isomorphism on $S\backslash \Sigma$, we have $H\backslash \Sigma\simeq C\backslash g(\Sigma)$, so that l is reduced generically along C. C is isomorphic to $Z\cap D''$ on $(Z\backslash g(\Sigma))\cap D''$. Namely $I_c=\sqrt{I_c}=I_l$ along $C\cap (Z\backslash g(\Sigma))$. We have $1=(H^2)_S=(g^*(L)H)_S=(Lg_*(H))_X=(LC)_X$.

Therefore we can apply (1.2) to X, C and l to infer that C is a connected component of l and that $l \simeq C \simeq P^1$ along C. If Sing $\tau_{\rm red}$ is nonempty, then Sing $\tau_{\rm red} \subset {\rm Bs}\,|L|$. Hence $Z \cap {\rm Sing}\,\tau_{\rm red} \subset Z \cap D''$ ($\simeq C$). Consequently $Z \cap {\rm Sing}\,\tau_{\rm red} \subset C$. As C is a connected component of l, this shows that Z is a connected component of τ . In fact, if not, there is an irreducible component Z' ($\neq Z$) of τ meeting Z. Then we choose a point $p \in Z \cap Z'$. We note that $Z \cap Z'$ is finite by E = 0. Hence since $p \in Z \cap {\rm Sing}\,\tau_{\rm red} \subset C$, $Z' \cap D''$ contains an irreducible component (a curve or a surface) of l meeting C. This contradicts that C is a connected component of l.

However $h^0(\tau,O_{\tau})=1$ by (2.1). Hence $Z\simeq \tau_{\rm red}$. As τ is Gorenstein and reduced generically along Z, τ is reduced everywhere and $\tau\simeq Z$. Since a prime Cartier divisor C of Z is smooth, so is Z along C. As Sing $Z\subset Z\cap {\rm Sing}\ \tau_{\rm red}\subset C$, it follows that Z is smooth everywhere. Thus we see $P^2\simeq S\simeq Y\simeq Z\simeq \tau$.

(2.3) Completion of the proof of (0.5). Bertini's theorem guarantees existence of $\tau = D \cap D'$ with a component Z of τ as in (2.2). By (2.1.3) and (2.2), $\operatorname{Bs}|L|_{\tau} = \operatorname{Bs}|L_{\tau}| = \operatorname{Bs}|O_{P^2}(1)| = \varnothing$. We have also $h^{\circ}(X, L) = h^{\circ}(\tau, L_{\tau}) + 2 = 5$ and $(L^4)_X = (H^2)_S = 1$. Consequently $X \simeq P^4$ by an easy argument. Q.E.D.

References

- [1] F. Hirzebruch and K. Kodaira: On the complex projective spaces. J. Math. Pures Appl., 36, 201-216 (1957).
- [2] J. Kollár: Flips, flops, minimal models etc. (1990) (preprint).
- [3] I. Nakamura: Moishezon threefolds homeomorphic to P³. J. Math. Soc. Japan, 39, 521-535 (1987).
- [4] —: Threefolds homeomorphic to a hyperquadric in P^4 . Algebraic Geometry and Commutative Algebra in Honor of M. Nagata, pp. 379-404 (1987).
- [5] —: On Moishezon manifolds homeomorphic to P_C^n (1991) (preprint).
- [6] T. Peternell: A rigidity theorem for $P_3(C)$. Manuscripta Math., 50, 397-428 (1985).
- [7] —: Algebraic structures on certain 3-folds. Math. Ann., 274, 133-156 (1986).
- [8] Y. T. Siu: Nondeformability of the complex projective space. J. reine angew. Math., 399, 208-219 (1989).
- [9] H. Tsuji: Every deformation of P^n is again P^n (unpublished).
- [10] S. T. Yau: On Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. U.S.A., 74, 1798-1799 (1977).