25. On the Fundamental Groups of Moduli Spaces of Irreducible SU(2)-Connections over Closed 4-Manifolds

By Hiroshi OHTA

Department of Mathematics, Faculty of Science, University of Tokyo (Communicated by Kunihiko Kodaira, M. J. A., March 12, 1990)

§ 1. Introduction and statement of result. Let M be a connected oriented closed smooth four-manifold and $P \rightarrow M$ be a principal SU(2) bundle over M with $c_2(P) = k$. Let $E = P \times_{SU(2)} C^2$ be the C^2 -vector bundle associated with P by the standard representation, and $AdP = P \times_{Ad} su(2)$ be the su(2) bundle associated with P by the adjoint representation. We fix integers $p \geq 2$ and $l \geq 1$. We set

 $\mathcal{A}_k := \{A+a \mid A \text{ is a smooth connection on } P. \ a \in L^p_t\Omega^1(AdP)\}$ which is the L^p_t -completion space of the principal connections on P. Here L^p_t means the Sobolev space of sections whose derivatives of order $\leq l$ are bounded in L^p -norms, and we denote the space of AdP valued smooth m-forms on M by $\Omega^m(AdP)$. We set

$$\mathcal{G}_k := C^0(M, P \times_{Ad} SU(2)) \cap L^p_{l+1} \Omega^0(EndE)$$

which is the L_{l+1}^p -completion space of gauge group of P. We denote by \mathcal{A}_k^* the subspace of irreducible connections of \mathcal{A}_k . We put $\mathcal{B}_k = \mathcal{A}_k/\mathcal{G}_k$ and $\mathcal{B}_k^* = \mathcal{A}_k^*/\mathcal{G}_k$. We call \mathcal{B}_k^* the moduli space of irreducible SU(2)-connections on P. We note that \mathcal{G}_k acts on \mathcal{A}_k^* not freely.

In this note we study the fundamental group of \mathcal{B}_k^* . We shall show the following theorem.

Theorem. Let M be a closed 4-manifold as above. Suppose that M is simply connected.

(1) When the intersection form of M is of odd type, then $\pi_1(\mathcal{B}_k^*)=1$

(2) When the intersection form of M is of even type, then

$$\pi_1(\mathcal{B}_k^*) = \begin{cases} 1 & \text{if } c_2(P) = k \text{ is odd.} \\ Z_2 & \text{if } c_2(P) = k \text{ is even.} \end{cases}$$

It is well known that S. K. Donaldson investigated the topology of 4-manifolds by using gauge theory (e.g. [2], [3]). In his works he studied the moduli space \mathcal{M}_k of anti-self dual connections on P with $c_2(P)=k$. Many properties of the topology of \mathcal{M}_k are got by the analysis of anti-self dual equation. But some properties are deduced from that of \mathcal{B}_k^* . In fact in [2] we had to show the orientability of \mathcal{M}_1^* . We can show it by using the fact that \mathcal{B}_1^* is simply connected ([2], [4]). Further in order to get more refinement invariants of 4-manifolds we shall have to argue with moduli spaces with higher instanton number k. Therefore it is fundamen-

tal that we study the topology of \mathcal{B}_k^* when we try to study the topology of 4-manifolds by dint of gauge theory.

Remark. (1) By [2] and [4] we know that $\pi_1(\mathcal{B}_1^*)=1$.

(2) Let \mathcal{G}_k^0 be the normal subgroup of \mathcal{G}_k which fix the fibre P_{x_0} over a base point x_0 in M. Then we know the topology of the framed moduli space of connections $\tilde{\mathcal{B}}_k = \mathcal{A}_k/\mathcal{G}_k^0$ in detail. There is a weak homotopy equivalence

$$\tilde{\mathcal{B}} = Map_{p}(M, BSU(2))$$

where Map_p denotes the space of based maps in the homotopy class corresponding to the bundle P (see [1], [3]). Further $\tilde{\mathcal{B}}_{n,k} = \mathcal{A}_{n,k}/\mathcal{G}_{n,k}^0$ denotes the framed moduli space of connections on a principal SU(n) bundle P with $c_2(P) = k$. Then $\tilde{\mathcal{B}}_{n,k}$ is simply connected for $n \geq 3$ ([2; § II.4]). These results are deduced from the topology of $\mathcal{G}_{n,k}^0$ because $\mathcal{G}_{n,k}^0$ acts freely on the contractible affine space $\tilde{\mathcal{A}}_{n,k}$. In fact $\pi_1(\tilde{\mathcal{G}}_{n,k}) \cong \pi_0(\mathcal{G}_{n,k}^0)$. But since in our case the topology of \mathcal{B}_k^* is not simply deduced from that of gauge group, we have to do more detailed argument.

- (3) A. Kono proved the following result about the full gauge group \mathcal{Q}_k that if \mathcal{Q}_k is homotopy equivalent to $\mathcal{Q}_{k'}$ then $k \equiv k' \pmod{6}$ ([5]).
- § 2. Outline of the proof. The gauge group \mathcal{G}_k has an ineffective Z_2 in its action on \mathcal{A}_k^* . This Z_2 is the centralizer of the holonomy subgroup of the irreducible connection on P and can be thought of as the center $\{\pm 1\}$ of SU(2). These elements of the center describe elements of \mathcal{G}_k because they are invariant under the adjoint action of SU(2), which is used to define \mathcal{G}_k .

We set $\tilde{\mathcal{G}}_k = \mathcal{G}_k/\mathbb{Z}_2$. Then we have a principal fibration

$$\tilde{\mathcal{G}}_{k} \longrightarrow \mathcal{A}_{k}^{*} \longrightarrow \mathcal{B}_{k}^{*}.$$

By the homotopy exact sequence of this fibration and the fact that \mathcal{A}_k^* has the weak homotopy type of a point, we have

$$(1) \pi_1(\mathcal{B}_k^*) \cong \pi_0(\tilde{\mathcal{G}}_k).$$

Thus we compute $\pi_0(\tilde{\mathcal{G}}_k)$.

First we compute $\pi_0(\mathcal{G}_k)$. According to [4] we have

$$\pi_0(\mathcal{G}_k) = [M, SU(2)] = [M, S^3]$$

where [M, SU(2)] means the homotopy equivalence class of continuous maps from M to SU(2). Moreover due to Steenrod's classification theorem (for example, see [6]) implies that

$$[M, S^3] \cong H^4(M, \mathbb{Z}_2) / \operatorname{Image} Sq^2$$

where $Sq^2: H^2(M, \mathbb{Z}_2) \to H^4(M, \mathbb{Z}) \cong \mathbb{Z} \to \mathbb{Z}_2$ is Steenrod's squaring operator reduced to mod 2, which is given by $Sq^2(\alpha) = \alpha \cup \alpha \pmod{2}$ for $\alpha \in H^2(M, \mathbb{Z})$. Therefore we have

(2) $\pi_0(\mathcal{Q}_k) \cong \begin{cases} 1 & \text{if the intersection form of } M \text{ is of odd type.} \\ Z_2 & \text{if the intersection form of } M \text{ is of even type.} \end{cases}$

On the other hand we have the principal fibration

$$Z_2 \xrightarrow{j} \mathcal{G}_k \longrightarrow \tilde{\mathcal{G}}_k.$$

We obtain the exact sequence of pointed sets

$$\longrightarrow Z_2 \xrightarrow{j_*} \pi_0(\mathcal{G}_k) \longrightarrow \pi_0(\tilde{\mathcal{G}}_k) \longrightarrow 1$$

where $Z_2 \cong \pi_0(Z_2)$. When the intersection form of M is of odd type, (1), (2) and (3) implies the assertion (1) of Theorem. When it is of even type, we have to study the map j_* in (3). We shall see the image of a non trivial element -1 of Z_2 under the map j_* .

Given any degree one map σ from M to S^4 , there is a pullback $\sigma^*: [S^4, S^3] \cong \mathbb{Z}_2 \to [M, S^3]$. Then $[M, S^3] = \text{Image } \sigma^*$. Moreover the inclusion $i: \mathcal{Q}_k^0 \to \mathcal{Q}_k$ induces an isomorphism

$$i_*: \pi_0(\mathcal{G}_k^0) \xrightarrow{\sim} \pi_0(\mathcal{G}_k)$$

by Lemma 5.10 in [4]. Thus we have the following isomorphisms

$$(4) Z_2 \cong \pi_0(\mathcal{G}_k^0) \xrightarrow{i} \pi_0(\mathcal{G}_k) \cong [M, S^3] = \operatorname{Image} \sigma^*[S^4, S^3].$$

Now there is an open cover $M=M^+\cup M^-$ with $M^+\simeq B^4$ (the 4-ball), $M^+\cap M^-\simeq S^3\times (0,1)$ and a clutching map $h:M^+\cap M^-\to SU(2)$ so that the SU(2)-bundle P is

$$P = M^+ \times SU(2) \sqcup M^- \times SU(2) / \sim$$

where $(m^+, g) \sim (m^-, g')$ if and only if $m^+ = m^-$ and $g' = h(m^+)g$. By that $c_2(P) = k$, the map $S^3 \ni x \mapsto h(x, t) \in SU(2)$ has degree k for any $t \in (0, 1)$. Then since \mathcal{G}_k^0 is considered as

$$\mathcal{G}_k^0 = \{ s \in \mathcal{G}_k \mid s \mid B^4 \equiv 1 \}.$$

 $s \in \mathcal{G}_k^0$ can be described as the pair of maps

$$s^+: M^+ \longrightarrow SU(2), \qquad s^-: M^- \longrightarrow SU(2)$$

with $s^-(x, t) = x^k s^+(x, t) x^{-k}$ on $M^+ \cap M^-$ and $s | M^+ \equiv 1$. Here we consider S^3 as the unit sphere in quaternion plane H.

Let $\lambda(t) = e^{it\pi}$ $(0 \le t \le 1)$ be a half circle from $\lambda(0) = 1$ to $\lambda(1) = -1$ in SU(2) which is also considered as the unit sphere in H. We put

$$s^{+} = \begin{cases} \lambda(t) & \text{on } M^{+} \cap M^{-} = S^{3} \times (0, 1) \\ 1 & \text{on } M^{+} - M^{-} = B^{4} \end{cases}$$

$$s^{-} = \begin{cases} x^{k} \lambda(t) x^{-k} & \text{on } M^{+} \cap M^{-} = S^{3} \times (0, 1) \\ -1 & \text{on } M^{-} - M^{+}. \end{cases}$$

Then this pair of maps defines an element s of \mathcal{G}_k^0 which is contained in the connected component of -1 in \mathcal{G}_k . Since $j_*(-1)$ is the connected component of -1 in \mathcal{G}_k , we have that $j_*(-1) = [s] \in \pi_0(\mathcal{G}_k^0) \cong \pi_0(\mathcal{G}_k)$. Under the isomorphisms in (4) we shall consider [s] as an element of $\sigma^*[S^4, S^3]$. We define a degree one map σ from M to S^4 to be

$$\sigma = \begin{cases} \text{north pole} & \text{ on } M^+ - M^- \\ \text{south pole} & \text{ on } M^- - M^+ \\ \text{projection} & \text{ on } M^+ \cap M^-. \end{cases}$$

Here the projection means the natural projection from $M^+ \cap M^- = S^3 \times [0, 1]$ to $S^3 \times [0, 1] / \sim = \Sigma S^3 = S^4$ which is considered as the one-suspension of S^3 . We define a map u from S^4 to S^3 to be

$$u: S^4 = \Sigma S^3 = S^3 \times [0, 1]/\sim \ni (x, t) \longrightarrow x^k e^{it\pi} x^{-k} \in S^3.$$

Then it is easy to see that $[s] \in \pi_0(\mathcal{G}_k)$ corresponds to $\sigma^*[u] = [u \circ \sigma] \in [M, S^3]$. Thus we obtain the following Lemma 1.

Lemma 1. $j_*(-1)=[s]=\sigma^*[u]$.

We note that the generator of $[S^4, S^3] \cong \mathbb{Z}_2$ is the one-suspension ΣH of the Hopf map H from S^3 to S^2 by the suspension theorem and the fact that H generates $\pi_3(S^2) \cong \mathbb{Z}_2$. Now we denote by H_k the k-twisted Hopf map

$$H_k: S^3 \ni x \longmapsto [x^k] \in S^2 = S^3/S^1$$

and we denote its one-suspension by ΣH_k . Then we can show the following lemmas.

Lemma 2. $[u] = [\Sigma H_k]$.

Lemma 3. $[\Sigma H_k] = k[\Sigma H]$.

To show Lemma 2 we construct a homeomorphism θ of S^3 by

$$\theta: S^3 = \Sigma S^2 = S^3/S^1 \times [0, 1]/\sim \ni ([a], t) \longmapsto ae^{it\pi}a^{-1} \in S^3.$$

It is easy to see that θ is well defined. Then the following diagram is commutative.

$$S^{4} = \Sigma S^{3} = S^{3} \times [0, 1] / \sim \xrightarrow{u} S^{3}$$

$$\Sigma H_{k} \qquad \qquad \Sigma f_{S^{3}}$$

To show Lemma 3 we define the map μ_k from S^4 to S^4 by

$$\mu_k: S^4 = S^3 \times [0, 1]/\sim \ni (x, t) \longmapsto (x^k, t) \in S^4.$$

Then we can show that the degree of μ_k is k and that the following diagram is commutative.

$$\begin{array}{ccc}
S^4 & \xrightarrow{\mu_k} S^4 \\
\Sigma H_k & \searrow & \Sigma H \\
S^3 & & S^3
\end{array}$$

Thus from Lemma 1, Lemma 2 and Lemma 3 we obtain

$$j_*(-1) = [s] = \sigma^*[u] = k\sigma^*[\Sigma H] \in \pi_0(\mathcal{G}_k) \cong \mathbb{Z}_2.$$

Hence when k is even, then j_* is 0-map. When k is odd, then j_* is surjective. So we conclude the assertion (2) of Theorem from (3).

Acknowledgment. The author wishes to thank Professor A. Hattori for helpful advice and encouragement.

References

- [1] M. F. Atiyah and R. Bott: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London, ser. A, 308, 523-615 (1982).
- [2] S. K. Donaldson: An application of gauge theory to four dimensional topology.J. Diff. Geom., 18, 279-315 (1983).
- [3] —: Connections, cohomology and the intersection forms of 4-manifolds. ibid., 24, 275-341 (1986).
- [4] D. S. Freed and K. K. Uhlenbeck: Instantons and Four-manifolds. M. S. R. I. Publications, Springer, New York (1984).
- [5] A. Kono: The homotopy types of gauge groups. Symposium in Kinosaki, Moduli Spaces and 3, 4-manifolds, pp. 78-85 (1987) (in Japanese).
- [6] E. Spanier: Algebraic Topology. McGraw Hill Inc. (1966).