No. 3] Proc. Japan Acad., 66, Ser. A (1990) 89

25. On the Fundamental Groups of Moduli Spaces
of Irreducible SU(2)-Connections over
Closed 4-Manifolds

By Hiroshi OHTA
Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J.A., March 12, 1990)

§1. Introduction and statement of result. Let M be a connected
oriented closed smooth four-manifold and P—M be a principal SU(2) bundle
over M with ¢,(P)=k. Let E=PX g, C* be the C*-vector bundle associated
with P by the standard representation, and AdP=P X ,,su(2) be the su(2)
bundle associated with P by the adjoint representation. We fix integers
p>2and I>1. We set

Ar:={A+a|A is a smooth connection on P. a € LI2'(AdP)}
which is the LP-completion space of the principal connections on P. Here
L? means the Sobolev space of sections whose derivatives of order <! are
bounded in L?-norms, and we denote the space of AdP valued smooth m-
forms on M by 2™(AdP). We set
i =C"(M,P X ,,SUR)NL?, Q°(EndE)

which is the L?, -completion space of gauge group of P. We denote by AF
the subspace of irreducible connections of 4,. We put B,=.4,/G, and
B= ¥ G,. We call By the moduli space of irreducible SU(2)-connections
on P. We note that G, acts on ¥ not freely.

In this note we study the fundamental group of B¥. We shall show
the following theorem.

Theorem. Let M be a closed 4-manifold as above. Suppose that M is
simply connected.

(1) When the intersection form of M is of odd type, then

71'1(-@1>é< )=1
(2) When the intersection form of M is of even type, then
Rt if c,(P)=Fk is odd.
ﬂ‘('@k)_{zg if c,(P)=Fk is even.

It is well known that S. K. Donaldson investigated the topology of 4-
manifolds by using gauge theory (e.g. [2], [3]). In his works he studied
the moduli space ¥, of anti-self dual connections on P with c¢,(P)=k.
Many properties of the topology of M. are got by the analysis of anti-self
dual equation. But some properties are deduced from that of $¥. In fact
in [2] we had to show the orientability of H*. We can show it by using
the fact that $j is simply connected ([2], [4]). Further in order to get
more refinement invariants of 4-manifolds we shall have to argue with
moduli spaces with higher instanton number k. Therefore it is fundamen-
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tal that we study the topology of $B¥ when we try to study the topology of
4-manifolds by dint of gauge theory.

Remark. (1) By [2] and [4] we know that =,(B¥)=1.

(2) Let G} be the normal subgroup of &G, which fix the fibre P_, over
a base point x, in M. Then we know the topology of the framed moduli
space of connections B,=.1,/ G} in detail. There is a weak homotopy equi-
valence

B=Map,(M, BSU(2))

where Map, denotes the space of based maps in the homotopy class corre-
sponding to the bundle P (see [1], [3]). Further B, ,=A,./G%, denotes
the framed moduli space of connections on a principal SU(n) bundle P with
c,(P)=k. Then &,, is simply connected for n>3 ([2; §I1.4]). These
results are deduced from the topology of &3 . because G° , acts freely on the
contractible affine space A, .. In fact m,(B, .)=n(G%,). But since in our
case the topology of B¥ is not simply deduced from that of gauge group,
we have to do more detailed argument.

(3) A. Kono proved the following result about the full gauge group
G, that if G, is homotopy equivalent to G,. then k=Fk' (mod 6) ([5]).

§2. Outline of the proof. The gauge group G, has an ineffective Z,
in its action on _{¥. This Z, is the centralizer of the holonomy subgroup of
the irreducible connection on P and can be thought of as the center {+1} of
SU(2). These elements of the center describe elements of &, because they
are invariant under the adjoint action of SU(2), which is used to define &,.

We set G,=G,./Z,. Then we have a principal fibration

Go—> AF—> B,

By the homotopy exact sequence of this fibration and the fact that 1}
has the weak homotopy type of a point, we have
(1) B (B = (8.
Thus we compute 7,(G,).

First we compute 7,(G;). According to [4] we have

m(Gr) =M, SU2)]=[M, S°]
where [M, SU(2)] means the homotopy equivalence class of continuous maps
from M to SU(2). Moreover due to Steenrod’s classification theorem (for
example, see [6]) implies that
M, S*1=H*M, Z,)| Image S¢*
where Sq*: H* (M, Z,)—~H"M,Z)=Z—Z, is Steenrod’s squaring operator
reduced to mod 2, which is given by S¢*(e)=aUa (mod 2) for « € HX(M, Z).
Therefore we have
(2) (G = {1 if the intersection form of M is of odd type.
Z, if the intersection form of M is of even type.
On the other hand we have the principal fibration

Zz"i*g k—"-)g) ke
We obtain the exact sequence of pointed sets
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(3) > Z (@) G)—>1
where Z,=nr,(Z,). When the intersection form of M is of odd type, (1), (2)
and (3) implies the assertion (1) of Theorem. When it is of even type, we
have to study the map 7, in (8). We shall see the image of a non trivial
element —1 of Z, under the map 7.

Given any degree one map ¢ from M to S*, there is a pullback o*: [S*,
S 1=Z,—~[M,S?]. Then [M,S*]=Image o*. Moreover the inclusion %: G$
=G, induces an isomorphism

i*: Tco(g(l)c)—N-)ﬂO(gk)
by Lemma 5.10 in [4]. Thus we have the following isomorphisms
(4) Zzgno(gg)—;»no(gk); [M, S*]=Image o*[S*, S°].
%

Now there is an open cover M=M*UM~- with M*~B* (the 4-ball),
M*NM-~8x%x(0,1) and a clutching map A: M* N M-—-SU(2) so that the
SU(2)-bundle P is

P=M*xSU@R)UM-XSU®2)/ ~
where (m*, g)~(m~,¢") if and only if m*=m- and ¢’=h(m*)g. By that
c;(P)=Fk, the map S*s x—h(x,t) € SU@2) has degree k& for any te(0,1).
Then since G9 is considered as
t={se G;|s|B‘=1}.
s e G% can be described as the pair of maps
st: M+——SU(2), s : M—>SU®)
with s~(z, f)=2*s*(x, t)z-* on M*N M- and s|M*=1. Here we consider S
as the unit sphere in quaternion plane H.

Let A(t)=e** (0<t<1) be a half circle from 2(0)=1 to A(1)=—1 in
SU(2) which is also considered as the unit sphere in H. We put

s+={2(t) on M*NM-=8"%(0,1)

1 on M* —M-=B*
s_={x"2(t)x"“ on M*NM-=8%(0,1)
—1 on M-—M+.

Then this pair of maps defines an element s of G} which is contained in the
connected component of —1 in G,. Since j,.(—1) is the connected component
of —1 in G,, we have that 7, (—1)=[s] € n,(GY) =n(G,). Under the isomor-
phisms in (4) we shall consider [s] as an element of ¢*[S* S*]. We define a
degree one map ¢ from M to S* to be
north pole on M*—M-
g={south pole on M-—M+
projection on M\*NM-.
Here the projection means the natural projection from M*NM-=8°x[0,1]
to 8% [0,1]/ ~=28*=8* which is considered as the one-suspension of S°.
We define a map % from S* to S® to be
u: St=38=8%[0,1]/ ~ 3 (x, t)——>aFe*=x " e S°
Then it is easy to see that [s] € n,(G,) corresponds to o*[u]l=[u-cle
[M,S?]. Thus we obtain the following Lemma 1.
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Lemma 1. j.(—1)=I[s]=0*[u].

We note that the generator of [S*, S*]=Z, is the one-suspension YH of
the Hopf map H from S* to S? by the suspension theorem and the fact that
H generates r,(S?)=Z,. Now we denote by H, the k-twisted Hopf map

H,: 8§53 x——>[2*] € S2=8/S"
and we denote its one-suspension by YH,. Then we can show the following
lemmas.

Lemma 2. [ul=[2H,].

Lemma 3. [2H,]=Fk[ZH].

To show Lemma 2 we construct a homeomorphism 6 of S* by

0: =38"=8/8'%[0,11/ ~ 5 ([a], )—>ae*"a~t € S*.
It is easy to see that 6 is well defined. Then the following diagram is
commutative.

S'=38=8%[0,1]/ ~—2 58"
SS
To show Lemma 3 we define the map g, from S* to S* by
e SP=8*%10,1]/ ~ s (x, h—>(a*, t) € S*.

Then we can show that the degree of 4, is k and that the following diagram
is commutative.

St i N
SH,,\P SH
Ss
Thus from Lemma 1, Lemma 2 and Lemma 3 we obtain
.7*("'1)= [8] =U*[u] =k0’*[2vH] € ﬂo(gk) E?g.
Hence when % is even, then j, is O-map. When k is odd, then j, is
surjective. So we conclude the assertion (2) of Theorem from (3).
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