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Introduction. Let lee an odd prime number and put l* "=(-1)(-l)n/.
Set k "=Q(/l* ) and let K [e the Hil]cert class field of k. In this note, we
study the Hasse norm principle for the Galois extension K/Q whose Galois
group is a generalized dihedral group. More precisely, we express the
number knot group for K/Q in terms of the ideal class group, of k. Our
theorem says that the validity of the Hasse norm principle for K/Q is
equivalent to that for K/k. As an application, we determine the Ono in-
variant E(K/Q) ([3, 4]), which was the motivation of this work.

1. The number knotgroup Ill(K/Q). For a finite Galois extension
L/F of number fields, we denote by Ill(L/F) the number knot group
NJ/NL, where J is the idele group of L and N means the norm map in
the obvious sense. Clearly, III(L/F)={0} is equivalent to the fact that the
Hasse norm principle holds for L/F and we also remark that Ill(L/F)
is nothing but the Tate-Shafarevich group of the norm torus T "=

Ker (R/(G)
N
G).

First, let us recall Tate’s cohomological method ([6]) to study Ill(L/F)
for a finite Galois extension L/F o number fields with the Galois group
G "=Gal(L/F). (See, or example [5].)

By the exact sequence of G-modules
(1.1) 0---L ;JL >C, >0
where Cz "=Jz/L, we have an exact sequence of Tate cohomology groups

(1.2) -./-(G, JL): >/-I(G, C) >/(G, L) g ;/(G, J) >....

Here it is easy to see that
(1.3) CokerfKer g--IiI(L IF).
If we choose a place w of L lying over each place v of F and denote by
the decomposition group of w, then we have the following commutative

, H(G, Z) > H(G, Z)

(1 4) I-[ /-(G, Z) >/-(G, Z)

/-’(G, J)-- Eo -’(G, L:)-(G, C)

where and are the sum of the corestrictions with respect to GG

diagram"
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for each v and the lower vertical arrows are isomorphisms induced by the
cup products with the canonical classes e H(G, C) and e H(G, L)
for each v.

By (1.3) and (1.4), the determination of III(L/F) is reduced to a purely
group-theoretical problem’

(1.5) III(L/F) Coker ( I-l, H(G, Z) ;H(G, Z)).
Now, let us come back to our case in the introduction. The Artin reci-

procity map a/ identifies the ideal class group H of k and the Galois
group H "--Gal(K/k). The genus theory tells us that the order of H, the
class number h of k, is odd. So, if we choose of order 2 in G, then we
have a semi-direct product"

G=H.(r with H normal.
Lemma 1. rav---a- for each a e H
Proof. Since=NoP is principal for any prime ideal of k, we

have
ro@/(_@)r- o@/(P) o@/()-.

Therefore, our claim follows from the (ebotarev density theorem for K/k.
Lemma 2. Each G is cyclic and so H(G, Z)=0.
Proof. It is enough to show that G is cyclic for any w lying above 1.

Let l: be the restriction of w to k. Since 1- and h is odd, : is trivial in

H and so 0:)-1. Hence G is cyclic of order 2.
By (1.5) and Lemma 2, we have

(1.6) III(KIQ)=H(G, Z) and LtI(K/k)=H(H, Z).
Proposition. H(G, Z)=H(H, Z).

Proof. Consider the Lyndon-Hochschild-Serre spectral sequence
E,--H(G/H, H(H, Z))--_. H+(G, Z)

associated to the extension
(1.7) I---+H >G >G/H >I.
Let

H(G, Z) F,.,o F,,
_ _

F,
_

be the filtration of H,(G, Z) such that E_, is the p-th composition factor
in ,H,(G, Z) and let

p,q E,q -Ep-r,q+r-1
be the differentials.

Since G/H is cyclic, E,0cE,0=0 and so we have
(1.8)
In the exact sequence
(1.9)
it is easy to see that

(1.10)

Here, remark that
(1.11)

H(G, Z) F,,.

0 >E, >F, >E, >0

E,
_
E,/Im d

E,2E,2/Im d" Eo,2 E,/Im d3,09 2,1’

E.o=E30
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since the natural map F,o=H(G,Z)-H(G/H,Z)=E],o is surjective by
the splitting of (1.7). Hence we have

0(1.12) d,o-- d,o
Together with (1.8)-(1.12), we have an exact sequence

(1.13) E, ;o, H.(G, Z) E, 0.
Here, since G/H is cyclic and h is odd, using Lemma 1, we can see that
(114) E, E =0 and E], H(H,Z)21

Therefore, our claim ollows from (1.13).
Let H=?=C be the decomposition of H into the direct sum of the

cyclic groups C (lign). Then, we can see
(1.15) H(H, Z) H<,C@zC
since the Tor term in the Kfinneth formula vanishes (cf. [5] Lemma 5, or
[1] V. 6). Hence, by (1.6), Proposition and (1.15), we obtain

Theorem 1. Keeping the above notation., the number knot group for
K/Q is given by

(K/Q)(K/k) H<C@zC
Corollary 1. The followings are equivalent"
a) The Hasse norm principle holds for K/Q.
b) The Hasse norm principle holds for K/k.
c) The ideal class group of k is cyclic.
Example. According to the table of Wada [7],

HZ/3Z XZ/3Z,
for/=4027. Hence, we have

(K/Q)Z/3Z.
2. The Ono invariant E(K/Q). Let L/F be a finite Galois exten-

sion of number fields. Ono [3, 4] introduced a kind of Euler number E(L/F)
defined by

E(L/F) :=
by. hr

where h, h and hr are the class numbers of L, F and the norm torus

T "= Ker (R/(G)G). And he obtained an elementary cohomological
expression for E(L/F) which involves the number knot group. or L/F.

In the following, we determine E(K/Q) for our K/Q as an application
of 1.

By Theorem in [3] 2, we have

(2.1) E(K/Q) (K/Q) (G,)
[K’: Q](Z N5)

where := the cardinality, denotes the ring of integers in K, G. de-
notes the ring of integers in K. (G. :=K. for archimedean w) and K’ is
the maximal abelian subextension of K/Q.

First, an easy calculation shows that the commutator subgroup o
G=H and so [K’: Q]=2.
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Case 1. /c is imaginary.
Clearly, (Z" N/(C)) 2. By local class field theory, ]-I #/(G., )wx)

=2. Hence, by (2.1), we have
E(K /Q)= ilI(K Q).

Case 2. k is real.
Since H has an odd order, K is real and so V[v /(G., )-2. By

the genus theory, N/()=-1 for the fundamental unit of k. Therefore
NKO(D=(--1)h=--I and so (Z’N/o()=I. Hence, by (2.1), we have

E(K/Q)= # ilI(K /Q).
In both Cases 1 and 2, we obtain
Theorem 2. E(K/Q) III(K/Q)

where Ill(K/Q) is given by Theorem 1.
By Corollary 1, we have
Corollary 2. E(K/Q)-=I=:H is cyclic.
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