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Asymptotic Behavior of the Solution for an

Elliptic Boundary Value Problem with
Exponential Nonlinearity

By Takashi SUZUKI*) and Ken’ichi NAGASAKI**)

(Communicated by KSsaku YOSIDA, M. d. A., March 13, 1989)

1. Introduction and results. We consider the elliptic eigenvalue
problem
(1.1) --zlu=e (in tg), u--O (on
for ue C2(f2)C(f2) and e R+--(0, +oo), where f2cR is a bounded do-
main with smooth boundary 32. We say that e t2 is a core of 2 if it is
a critical point of t(x)=K(x, x), where K(x, y)=G(x, y)+(1/2z) loglx-yl,
G--G(x, y) being the Green function" --lG--c(x-y), GI:eo--O. When
is simply-connected, cores are finite. Furthermore, a core is unique if
is convex. For these facts, see Friedman [3] for example. On the other
hand, for each core e t2 satisfying a generic constrain, a branch S* of
the solutions {(u, )) for (1.1) is constructed by the method of singular
perturbation such a way that u makes one-point blow-up at as $ 0.
This fact has been established by Weston [9], Mosley [6] and Wente [8].

In the present note we show that conversely each family of solutions
makes finite-point blow-up for star-shaped 2 as $ 0, unless it approaches
to the trivial solution u--O of (1.1) for --0. More precisely,

Theorem. If 2 is simply connected and the family of solutions (u) of
(1.1) accumulates as 2 $ 0 to v-87E(x) in Wl’(tg) (lp2) and in C(2\{}),
then e t2 is a core and the function E--E(x) solves --IE,--() and

EIo=O.
Spruck [7] has studied a similar property for Sinh-Gordon equation in

the rectangular domain RcR2. We are much inspired by his work, but
the finiteness of a blow-up point does not follow from his argument for
general domains. Our result extends to other semilinear eigenvalue prob-
lem in two-dimensional domains with exponentially-dominated nonlineari-
ties, and details will be published elsewhere.

2. Outline of Proof. The proof is divided into three parts"

Claim 1. When 2 is star-shaped, then 2:=__[ edx is bounded as
d

aS0.
Claim 2. If (27} is bounded, then (u} accumulates to a v e WI’P(9)

C([2\(x, ..., }) for some finite points , ..., e
Claim 3. If {1, ", }--(}, we have 2:-8z and v--8rE with some
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core , whenever t9 is simply connected.
Proof of Claim 1. This follows immediately from Rellich-Pohozaev’s

identity.
Proof of Claim 2. By means of Kaplan’s argument, we can show that

Ilu Io) e O(1) by 2: e 0(1). This fact, together with the GNN property
utilizing the Kelvin transformation (Gidas-Ni-Nirenberg [4]), implies that
Ilull() e 0(1), where w is a neighborhood of (2 in tg, through the argu-
ment by de Figueiredo-Lions-Nussbaum [2]. Hence, from elliptic bound-
ary estimates and bootstrap argument we obtan ]lDull() e 0(1) for each
a with lal=m, where a neighborhood of 3/2 in 2 satisfies

D.... On the other hand, 2:=llull e O(1) implies Ilull,. e O(1)
(p2) by the L-estimate due to Brzis-Strauss [1]. Hence {u} accumulates
to a v e W’(9)f C(), which is harmonic in .

Here we introduce the function S=Uz--(1/2)u, where z=x+ix for
x=(x, x). Then, according to Liouville [5] we have

Proposition. S--S(z) is a holomorphic function, of z e 2C. Let
{1,p2} be the fundmental system o,f solutions for zz+(1/2)S(z)=O satis-
fying l(Zo) (Zo)’ 0 and (Zo) (Zo) 1, where zo xlo+ixo with xo---
(xl0, x0)e/2 being a maximal point of u=u(x). Then we have

(2.1) e_/= c2] ]2+ 2__c-2]. ]2
8

with a real constant c.
We know that maximal points can not approach to 9 by [4]. Further.

more, the holomorphic functions {S=S(z)} are uniformly bounded near 39
so that [[S[[ e 0(1) by the maximal principle. Hence I[1[o e O(1) (]=
1, 2), and {=(z)} accumlates to some holomorphic function =(z) in
the open compact topology of C(9). Since 0, the set Z of its zeros is
discrete. Also {c} accumulates to some p e [0, + co].

In the case p e (0, + oo), {[]u [?o\z,} is bounded so that v is C in 9\Z
and e-/=p[] holds there. Furthermore Zfw= and hence Z is finite,
corresponding to the blow-up set of v. In the case p---t-so, v0 ollows
similarly. For the case p--0, let us suppose that {(2/8)c-} accumulates to

/ e [0, +oo]. When p e (0,-t-co), we similarly have that Z is finite and
coincides with the blow-up set of v. If /= +oo, then v0 follows.
Finally, the case p=/=0 contradicts to ]]u]]z() e O(1).

Proof of Claim 3. Since IS ]z() e 0(1), there exists a holomorphic
unction T-T(z) in 9 such that T(z)=vz--(1/2)v holds in 9\{, ...,}.
On the other hand v e W,(9) (lp2) is harmonic in 9\[}, which
implies that h----v--aE is harmonic around z--, where a is a real
constant. In act, we can show that zlv=C(l) around z= or some
constant C. Now we recall E=--(1/4)loglG], where G=G,"
{[zll} is a conormal mapping with G()=0.

For w=v-h=E we have wz--(1/2)w= -(/4){(G"/G)+ (1- (/8))
(G’/G)2}, which is meromorphic around z=. Since (3/32){w-(1/2)w}
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--(a/4)/()h by (3/3)T(z)--O, we have a=0 or h=0. In the latter case,
the function h=h()=H(z) is anti-holomorphic and realvalued, so that is a
constant. Hence w--(1/2)w=T(z) is holomorphic around z=. Thus
G"(x)=0 and a=8 follows because G’=/=0. The ormer characterizes that
x is a core. In other words, z= is a removable singular point of
the harmonic function v e C(9\{,}) or is a core and v=8uE,,/constant
around z=. Regarding the unique continuation property of harmonic
functions, we conclude that v=8uE, because v]o=E,lo,=0.

Note added in Pro.of. Theorem holds for general domains without
simply connectedness. Solutions {u} make finite point blow up unless they
approach to 0 or make entire blow up. Blowing up points {,..., } are
characterized by k(x)--K(x, x) and G(x, y). Details will be written in the
paper cited at the end of 1.
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