No. 1] Proc. Japan Acad., 65, Ser. A (1989) 15

5. On the Total Variation of Argument f(z) Whose
Derivative Has a Positive Real Part

By Mamoru NUNOKAWA
Department of Mathematics, Gunma University

(Communicated by Kosaku Yo0SIDA, M. J. A,, Jan. 12, 1989)

1. Introduction. Let R denote the class of functions which are
analytic and satisfy Ref’(2)>0 for |2|<<1 and are normalized by f(0)=0 and
f(0)=1.

Noshiro [3] and Warschawski [4] showed that Ref/(z) >0 is a sufficient
condition for the univalence of f(2) in any convex domain.

MacGregor [2] investigated the class of functions which belong to R
and obtained many interesting results.

It is the purpose of the present paper to obtain the total variation of
argument f(z) whose derivative has a positive real part.

2. Preliminaries. Lemma 1. Let f(2) e R, then

lf( ) \g log(14+7)—1
where 0<|z|=r<1.

We owe this lemma to [2, Theorem 1].

Lemma 2. Let f(2) e R, then
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where |z|=r<1.
We owe this lemma to [1, p. 482].
3. Statement of result. Theorem. Let f(2)e R, then
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where |z|=r<1.
Proof. From Lemmas 1 and 3, we easily have

zf/(Z) 27 zf/(Z) —2— - . ,
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where 0<|z|=r<1.
For the case »=0, the estimation (1) is true.
This completes our proof and (1) implies that

L Re zf (z) ‘dﬁ 0<log ) as r—1.
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This means the order of infinity of the tctal variation of argument
f(®) e R is at most log1/(1—7) as r—1.

The author can not answer the question whether there is a function
f() e R for which
V(r)
-1 log1/(1—7)
where

o=

Re zj{(g) )da, |2|=r<1.
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