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The Behaviour near the Characteristic Surface of Singular
Solutions of Linear Partial Differential Equations
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By Sunao 0UCHI
Department o2 Mathematics, Sophia University

(Communicated by KSsaku OSIDA, M. J. A., April 12, 1989)

Let L(z, z) be a linear partial differential operator with the order
ml. Its coefficients are holomorphic in a neighbourhood o the origin
z=0 in Cn/l. K is a nonsingular complex hypersurface through z=0.
In the present paper we treat the equation
(0.1) L(z, 3z)U(Z)-- f(z).
We assume K is characteristic or L(z, 3z). The functions u(z) and f(z)
in (0.1) are holomorphic except on K. The results are the following"
I. u(z) has some growth order near K and the behaviour o f(z) near
K is mild, then that of u(z) is also the same type. (Theorems 2. 1 and
2.3 and Corollaries). The proofs will be given elsewhere.

1. Definitions. In order to state the results we give notations
and definitions" z (Zo, z, ., Zn)-- (Zo, Z’) is the coordinate
=max{lzl; Oin}. 3=(30,3, "",3)--(0,’), 3--3/z. We choose the
coordinate so that K={z0--0}. We can write the operator L(z, ) in the
orm

’L(z, 3z)= :0L(z, 3z),
A t(z, 5’)(30)-t(1.1) L(z, )--t:s ,

n,t(z, 3’) (Zo)Ja,(z, ’) = (k, 1)
where L(z, 3) is the homogeneous part of order k, A,(z, 3’)O if
L(z, 3) 0 and a, (0, z’, 39 0 if A, (z, 3’) 0. We put s + oo if L(z, )
----0, and ]=](k,/)= / oo if A,(z, ’)--0.

Let us define the characteristic indices introduced in 0uchi [7] and
[8]. Put d, / ] (k, l) and
(1.2) d=min{d, s_lk}.
Put A-{(k, d) e R" O_k_m, d: +c}. Let 3 be the convex hull of A.
Let 27 be the lower convex lart of the boundary of , and z/be the set
of vertices of X, z/={(k, d); i=0, 1, ..., l’}, m=kok... k,_O. We
put
(1.3) a=max{1, (di_l-d)/(k_--k)}.
Then there exists a p e N such that aa). z_a=1. We call
{a; l_i_p} the characteristic indices o L(z, 3) or the surface K.

Dedicated to Professor Tosifusa KIMURA on his, 60th birthday.



No. 4] The Behaviour near the Characteristic Surface 103

(k, d)

(m, d.)=(ko, do)

)/ (dl, d,)

For 9={z0 e C; IZolR} and t0’=[z’ Cn’ IZt]R} we put /2=2t0’,
tO=(z0 e C--[O};IZol_R, larg zolO} and t9o=90t’. For any 0’ (00’0),
and any compact set D9’, we put tO(t’,D)=.c2,Dt9. Let us define
function spaces"

((9) is the set of all holomorphic unctions on tO.
)(tO--K) is the set of all holomorphic unctions on the universal

covering space o tO--K.
(2--K)-- {f(z) e O)(t9 -K); f(z)=a(z) log(z0) + b(z)/z, a(z), b(z) e

02 (9), k e N}. The singularities of f(z) e o2l(9--K) are polar or logarithmic.
O)(c2o) is the set of all holomorphic functions on tO.
Asyt(c2o)=(f(z) )(tOo); For any 9(a’,D) there exist constants A=

A(t’, D) and B=B(t’, D) such that
(1.4) If(z)--:o a(z’)zl=ABF(N/y+ 1)lz01 in /2 (t’, D),
where a(z’) e 02(9’) (k=0, 1, ...)).

l--Asy()(9o)=(f(z)e 02(2); For any tO(0’,D) there exist constants
A=A(O’, D) and B=B(0’, D) such that
(1.5) If(z) (-z_:o a(z’)z) log (Zo) _--- b(z’)Zo

ABF(N/’+ 1) z01l log (z0)
and
(. 6) If(z)-(:o a(z’)z) log (z0)-jo b(z’)zol

gABF(N/-b, 1)lz01N in tO(t’, D),
where a(z’), b(z’) e 0)(t9’) (k=0, 1, ...)}.

)()(9o)=(f(z)eO2(;2o); For any e)0 and tO(O’,D) there exists a
constant C=C(, ’, D) such that
(1.7) If(z)l<=C exp(lz01-9 in 9(t’, D,)}.

2. The behaviour of sulutions. Now let us put
(2. 1) " a_ 1-- 1.

Theorem 2.1. Suppose that L(z, 3z) satisfies the conditions
(2.2) (a) al, (b) d_--0, (c) d--s.
Let u(z) e )() be a solution of
(2. 3) L(z, 3)u(z)=f(z) Asyl(t9) (’).
If u(z) e )()(2), then u(z) aso belongs to Asy((9o).
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Corollary 2.2. In Theorem 2. 1, if f(z) 0([2) and t>(u/2’)+z,
then u(z) is holomorphic in [2, that is, u(z) has the holo.morphic pro-
longation to K.

Theorem 2.3. Suppose that L(z, Sz) satisfies the conditions (2.2).
Let u(z) e 0(12o) be a solution of
(2. 4) L(z, 3z)u(z): f(z) e --Asyf,l(/2o)
If u(z) e (r)([2), then u(z) also belongs to

Corollary 2.4. In Theorem 2.3, if f(z) e l([2--K) and 0)(u/2’)+2u,
then u(z) is in l(tg--K), that is, u(z) has at most polar or logarithmic
singularities on K.

Let us show examples. Let L(z, 3z) be an operator of the form
(2.5) L (z, ) (0) +A(z, ’),
where ord. A(z,’)--mk and A(O,z’,’)O. Then a=m/m--k,
and ’= k/m--k. The conditions (a), (b), (c) in (2.2) are satisfied. Another
example is
(2.6) L(z, z)=a(Z)(o)+(Zo)J(g,,t(Z, ’)(0)-tl+a0, to(Z, ’) (0)-t,
where {a(z)a, l(Z, ’)ao, o(Z, ’)} Io--0 0, /Co ) kl ) kz and kz)/Co 10. If
(10-- (l + ])) (/co-- k)> (l+ ]) (k-- k)> 1, then a- (10-- (l + ])) (/Co-- k)
=-(l+])/(k--kz)>a--=-I and ’--az-1. If (lo/(ko--kz))=(lo--(l+j,))/(ko--k),
then al=(lo/(ko--kz))az--1 and ’--a--l.

Remark 2.5. Corollary 2.2 is a generalization of Theorem 2. 1 in
[10]. In [10] the conditions for the operator L(z, ) are superflous.

Remark 2.6. As for the existence of solutions with singularities on
K was investigated in [1], [2], [3], [4], [9], [11] and [12]. The behaviours
of singular solutions u(z) near K were investigated in [5] and [6] under
the condition that the traces of u(z) on the surface which is transversal
to K, say S, are polar on S fK.
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