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1. Introduction. In this paper we deal with the problem of the
existence of T-periodic solutions for the T-periodic quasilinear ordinary
differential system
(1) ¥=A¢,x)c+F(, x)
where A(t, x) is a real n Xn matrix continuous in (¢, ) and T-periodic in £,
and F'(t, 2) is an R"valued function continuous in (¢, z) and T-periodic in
t. We consider the associated linear system
(2) 2 =B(@)x
where B(t) is a real n Xn matrix continuous and T-periodic in ¢.

Hypothesis H. There exist no T-periodic solutions of (2) except for
the zero solution.

In [1], A. Lasota and Z. Opial discussed the same problem under some
hypothesis corresponding to H: for each continuous and T-periodic func-
tion y(-), A(-,y(-)) e M*, where M* is a compact subset of continuous and
T-periodic matrices whose systems satisfy Hypothesis H. They required
that F'(¢, x) satisfy the following :

lim inf L f " sup | F(¢, ») || dE=0.
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In [2], A. G. Kartsatos considered the existence of T-periodic solutions
of (1) under the conditions that A(t, x) is “sufficiently close” to B(%), the
system (2) of which satisfies Hypothesis H and that F'(¢, x) does not depend
on x.

In Main Theorem we give an explicit extent that shows how A(f, x)
in (1) is close to B(t) in (2) and we obtain certain conditions of F'(¢, ) which
are weaker than those of [1], [2], respectively.

2. Preliminaries. The symbol ||| will denote a norm in R” and the
corresponding norm for % xXn matrices. Let C, be the space of R"-valued
functions continuous in R! and T-periodic with the supremum norm. Let
C[0, T1 be the space of R*-valued functions continuous on [0, 7] with the
supremum norm. Let M[0, T'] be the space of real n X n matrices continuous
on [0, T'] with the supremum norm

|All.=sup{|A®|; t e [0, TI}.

We define a bounded linear operator U : C[0, T]—-R" by U(x(-))=x(0)

—2(T) with the norm
|Ull=sup {|U@()I; || 2]l.=1}.



No. 3] On the Existence of Periodic Solutions 63

We denote X,(-) by the fundamental matrix of solutions of (2) satisfying
X;(0)=1I where I is the identity matrix. Put Uy,=I—Xy(T), for x,c R™ we
have U(X (- )x)=Uzx,. WealsoputS,={xreR";||z||<r}and C;,={yeC;;
l¥ll.<r}. Since

X, () =1+ j : B(s)X,(s)ds and X;,l(t):l—j: X;'(s)B(s)ds,

applying Gronwall’s inequality, we have for any t e [0, T']
(3) I X:MI=K, [X3FOI=K

where K=exp <I: IB(8)]] ds).

The following lemmas are well known.

Lemma L,. Hypothesis H is equivalent to det U,+0. (See[3].)

Lemma L,. If det Uy+0, then we can choose a positive constant p
0<p<) satisfying
(4) Uz 1=1/p.

Suppose that Hypothesis H holds, then there exists p in (4) from L,
and L,. Furthermore we assume that positive constants 6, R and functions
A(t, x), F(t, x) satisfy the following inequalities :

(5) KT exp (K%8T)<p/{2 | Uz}

(6) R<o(1—p)/IKT exp (3T){2K? exp (25T) + p(1— p)}]
(7) A, ) —B@)|| <6 (teR, xze8,)

(8) [1P¢,o1at<rrT  @es).

3. Main result. We consider the linear nonhomogeneous system of
T-periodic differential equations

(9) =A@, y@®)x+F(t, y(t) (yeCy,,)
together with a boundary condition
10) U(x)=0 (x € C[0, TD).

Let X,(-) be the fundamental matrix of solutions for the homogeneous
system corresponding to (9) satisfying X,(0)=I. Put U,=1—-X,(T), we
obtain U(X,(-)x)=U ,x, for x,c R".

Theorem. If (5)—(8) are satisfied, then for each y in C,,, there exists
the inverse of U, satisfying
an 1U;1=1/{p(1—p)}
under which Hypothesis H holds. Moreover the problem ((9), (10)) has one
and only one solution in Cr .

Proof of Theorem. By the variation of parameters formula we have

X, @)= Xp()+X5(t) ﬁ X5 ({A(s, y() — B(9)} X (s) ds.

Then by (8) and (7) we obtain for t e [0, T]
X, —X@®

<IXR@ ] f; 1 X5 ()| A(s, y()—B() | {I| X, (8) = X ()| +]| X p(8) [}ds

t
<K% f 1X,(8)— X 5(3)|| ds+ KT
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By (5), applying Gronwall’s inequality, we have

12 | X, —X@®|<K’ST exp (K*3T)
=p/{21U5"}.
Then
13) |(Up—U ), || = UX(-)—X,(- )|l
=2 X=X |l 2|l
el /U3

By (4) and (13) we obtain for x,e€ R”
el @I ZI U | (Us— U )|
=@ —= U U 0l
=12l =11 U, ol/ p-
This yields
1 U2 | =p(1—p) ||,
Hence U, has the inverse and (11) holds. Therefore the problem ((9), (10))
has one and only one T-periodic solution «, :

A9 @, =—U; U@, +j A(s, y(8)x,(8)ds + f F(s, y(s))ds
where
p,®)=X,® f X7 (s)F (s, y(8))ds.

By the same argument used in (3), we obtain | X,(#)||<K exp (6T) and
| X; '@ || <K exp (6T). This yields
. =7RTK" exp (25T).
From (14) we obtain for ¢ € [0, T']
oy (®) 1< rRT{ 2E X @T)
p(1—p)
so that, by Gronwall’s inequality,

(b)) < TETZEE XD RO F o010} e (') (s, ys) | ds).
p(1—p) 0
Thus, by (6), |2,(®)||<r. This completes the proof.
Remark. x, can be expressed by
(15) xv(t)= —Xz/(t)Ugl[U(py())]+p1/(t)-
Main Theorem. If (5)—(8) are satisfied, then there exists at least one
solution of (1) in Cr, ., under which Hypothesis H holds.
Proof of Main Theorem. DefineV :C,,—Cy, for yeCr, by V@)(®)
=z,(t) where x, is the T-periodic solution of ((9), (10)).
V maps the closed ball C, , into itself.
Let y,— ¥y, (h—>c0) in Cr,. In the same way as (12)
”sz—Xyo”oo
SET|AC, ¥.())—AC, %(- )|l exp (KT |AC, ¥, (- )= AC, YD)
so that
(16) X,,—X,, (n— 00)
in M[0, T]. By the same argument used in (13), we obtain
I (Ulln— Uyo)xl)” =2| qu'_Xz/o llo Il 20l

+1}+£ 1AGs, y() || [|2,(s) || ds
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This yields |U,,—U,,|->0 (=—c0). From the first assertion of Theorem,
we have
105 — U 11U MU — U, I U
SNU,,— Uyl {o* A —p)}
This yields ||U;}—U,}!|—>0 (n— ). From the variation of parameters
formula we have
X720~ X;(0)

= {I: X () {A(s, yy(8)) — ACs, yn(S))}X,,o(s)ds}X;;(t),

By the same argument used in (16), we obtain X '—X ' (n— o) in M[0, T].
This implies p,,—p,, (t—o0) in C[0, T]. Thus, by (15), V(y.)—V (¥,) (n— c0)
in Cr ..
It is clear that V(C,,,) is uniformly bounded. From (14) it follows
that for ye C,,
VE)— V@) |

<[ 4G, y@) | 7ds +| [ 1 F (5, (s 1 ds

Z{@+|B|l.)r+ N}t —t,) (t,t, €0, TD
where N=max {|F(t,2)|; t€[0,T], xeS,}. Consequently, V(C;, ) is equi-
continuous. By Ascoli-Arzera theorem V(C;,,) is a relatively compact set
inCr,.
According to Schauder’s fixed point theorem, V has at least one fixed
point in C;,. Therefore (1) has at least one solution in C,,, and this
completes the proof.
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