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By Hiroo MATSUDA
Department of Mathematics, Kanazawa Medical University

(Communicated by Kunihike KODAIRA, M. J. A., Oct. 12, 1983)

1. Introduction. Let N be an n-dimensional Riemannian mani-
fold isometrically immersed into a Euclidean (n+ k)-space E*** (k=1)
and C{/,(N) be the unit normal bundle of N in E*+*. Then the Gauss
map of CY/4(N) into the unit sphere about the origin of E"+* was given
by Chern and Lashof [1]. J.L. Weiner [5] gave a generalization of
this map as follows: Let N be an isometrically immersed n-dimen-
sional Riemannian manifold into a complete (n-+ k)-dimensional
Riemannian manifeld. Suppose that for a point p of N, N does not
intersect the cut locus of ». The parallel displacement of v € C{/,(N)
(=the unit normal bundle of N in M) along the shortest geodesic seg-
ment joining the foot point of v to » gives a mapping of €/, (N) into the
unit sphere in the tangent space of M at p. This map is called the
Gauss map on N based at p. R. Takagi [4] described an n-dimensional
complete Riemannian N isometrically immersed into a Euclidean
(n+1)-sphere S”*! when the Gauss map on N based at a point S**' has
constant rank. Furthermore, J. L. Weiner [5] showed similar results
when the ambient space is a hyperbolic space of curvature —1 and
also reproved Takagi’s theorem in a simpler faghion. When the
ambient space M is a model with a pole o, the cut locus of o is empty.
So, for any isometrically immersed Riemannian manifold N into M,
the Gauss map G, on N based at o can be defined. In this note, we
will study the Gauss map G, and show the similar results to these of
J. L. Weiner.

2. DPreliminaries. Let (M, 0) be an n-dimensional model with a
pole o (n=2) and h:=Exp,: M,—~M be the exponential map from the
tangent space M, at o of M onto M. Choosing an orthonormal basis
{e,, -+ -, €.} on M, let {3, ---,y"} be the normal coordinate system
relative to this basis. Let ¢ be the Riemannian metric on M. Then
h*g is a Riemannian metric on M, and written by

h*g=dr*+ f(r)de*.
Here d6* denctes the canonical metric on the unit sphere of M, r is
the usual radial function on M, and f(r) is the C~ function on [0, o)
satisfying
fO®=0, f'(0)=1, f(r)>0 for r>0.
3. Parallel displacements. For a tangent vector
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A=37,a'(p)a/oy'(p) at p=h(Ti.v'e)eM,
the parallel displacement of A from p to o along the geodesic segment
¢ joining o and p is denoted by I'(A). Then, by the use of Jacobi
fields, we have
Lemma 1.

F(A)=i(;i - ai(p)e,+( J@) )g(A ()] Zm—ei

where r= 5., W)Y *=the distance between oand p.

Remark 1. We note that g(4, {(r))=>"2, a’(p)(y'/r) by the Gauss
Lemma.

Now, we define the new coordinate system on M by

x’(p):=1mexp< r_di) (=1, ---,m)
r

1 f(s)
for pe M, where r=(7, (¥'(p)))"*=the distance between o and p.
It is shown as follows that {', - - -, 2"} is a coordinate system of M.

Lemma 2. The map ¥ : M—R" defined by ¥ :=uoh"' is one to
one and C* map, where u is the map M,—~R" defined by
u(Cr yle)=(@', -, 2")
and
ds

i .=_;‘/i (Ir ____) — n 1)2)1/2
#ti=——exp o) " (= @O,

Proof. Since h-': M—M, is diffeomorphism, it is sufficient to
show that « is one to one and C~ map. It is clear that « is one to
one on M, and C* in M,—{0}. Let

" ds
F( ¥we): =1 r)exp( )
ZI 1 i/ / f(S)

Since

oF oy = Fy (f’fr) -1)

and lim,_, F' is uniquely determlned as to be a positive constant, we

must show that each
2\ f(r)

has a smooth extension across the origin. It is known ([2], [3]) that
f(r)=r+7U(r) and I(r) has a smooth extension across the origin. Thus
,7¢=Vyi( r _1)= —y'Ur)
r2 \r-4r(r) 14+7%(r)
has a smooth extension across the origin.
Now we have the parallel translation in terms of the new coor-
dinate system {x'} by Lemma 1 and Remark 1.
Lemma 3. For a tangent vector A=>"_, b (p)@/0x)(p) at p e M,
we have




No. 8] The Gauss Map in Models 399

__ FOsfm " i) 9
= exp (IT ﬁ.) 211 ') oxt )
1 f(8)

where r=the distance between o and p, and

F©=lim 1/r) exp ([[ #2) =tim (1709 exp ([ _22-).
Now let p=exp ( :?%) Then p=(32, ()9 and so by Lemma
3, we have

Proposition. Let (M, o) be an n-dimensional model with a pole o.
Then
* ds
@ 1f exo ([T
Dr={(a', - - -, )| 2311 (@)*=p5}
with the Riemannian metric ¥(p)’g, where g, is the restriction of the
canonical Euclidean metric on R™ to D",
“ ds

@ If exp ([ 5
nian metric 1(p)'g,.

4. The Gauss map. Let N be an n-dimensional Riemannian
manifold isometrically immersed in an (n+ k)-dimensional model (M, o)
with a pole o (k=1). Then, by Proposition in § 3, N may be immersed
(not isometrically in general) in the Euclidean space E"** of dimension
n+k. Let G5 be the usual Gauss map in E***. By Lemma 3, we have

Lemma 4. Let N be an n-dimensional Riemannian manifold iso-
metrically immersed in an (n+ k)-dimensional model (M, 0). Then the
following diagram is commutative

Y (N)— 225 §rr-1(1)
71 X1/7(0)
W) — 25 4531 /7(0)),
where 7(v) :=1/7(p))v for a unit normal vector v at p=(z', ---,2"), p
and 7 are the same as in Proposition, and S"**~'(«) is the sphere about
the origin in E™** of radius «a.

Corollary. Since 7:CYVz(N)—-C/,(N) is a diffeomorphism, the
rank of Gy at v equals the rank of G, at 7(v) for all v € CUV4(N).

If N is orientable and k=1, we can identify N with a component
of C1/,(N) and also the corresponding component of CI/,(N). Then
G, : N—the unit n-sphere about the origin in M, is the Gauss map
based at 0 and G, : N—S"(1) is the usual Gauss map in E"*!,

Theorem. Let N be an n-dimensional complete orientable
Riemannian manifold isometrically immersed in an (n+1)-dimensional

)_—. po<oco, M is isometric to

>=oo, M 1is isometric to R with the Rieman-
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model (M, 0). Supposethat G, has constant rankn—m on N (0<m=<n).

1) If m=0 and N is compact, then N is diffeomorphic to the n-
sphere.

@) If 1I<m<n-—1, then N is foliated by m-dimensional totally
umbilic submanifolds. :

3) If m=mn, then N is a totally umbilic hypersurface.

Proof. (1) is clear.

Since the rank of G, equals the rank of G, by corollary, N is
foliated by m-dimensional planes L™ in E"*' intersected with M by
Lemma 2 of [1]. For each L™, L™ N M with the induced metric from
M is a totally umbilic submanifold. Thus (2) and (3) are verified.

Remark 2. If M is the hyperbolic space, each totally umbilic
submanifold in Theorem is a hyperbolic space of a certain constant
curvature (see [5]).
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