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1. Introduction. Let N be an n-dimensional Riemannian mani-
fold isometrically immersed into a Euclidean (n+k)-space E/ (kl)
and c(?(N) be the unit normal bundle of N in E/. Then the Gauss
map of c(N) into the unit sphere about the origin of En/ was given
by Chern and Lashof [1]. J.L. Weiner [5] gave a generalization of
this map as follows" Let N be an isometrically immersed n-dimen-
sional Riemannian manifold into a complet (n+k)-dimensional
Riemannian manifold. Suppose that for a point p of N, N does not
intersect the cut locus of p. The parallel displacement of v e c(N)
(-the unit normal bundle of N in M) along the shortest geodesic seg-
ment joining the fot point of v to p gives a mapping of c.(N) into the
unit sphere in the tangent space of M at p. This map is called the
Gauss map on N based at p. R. Takagi [4] described an n-dimensional
complete Riemannian N isometrically immersed into a Euclidean
(n+ 1)-sphere S+ when the Gauss map on N based at a point S/ has
constant rank. Furthermore, J. L. Weiner [5] showed similar results
when the ambient space is a hyperbolic space of curvature -1 and
also reproved Takagi’s theorem in a simpler fashion. When the
ambient space M is a model with a pole o, the cut locus of o is empty.
So, for any isometrically immersed Riemannian manifold N into M,
the Gauss map G on N based at o can be defined. In this note, we
will study the Gauss map G and shw the similar results t those of
J. L. Weiner.

2. Preliminaries. Let (M, o) be an n-dimensional model with a
pole o (n2) and h :=Expo :Mo--M be the exponential map from the
tangent space Mo at o of M onto M. Choosing an orthonormal basis

{e,..., e} on Mo, let {y,...,y} be the normal coordinate system
relative to this basis. Let g be the Riemannian metric on M. Then
h*g is a Riemannian metric on Mo and written by

h*g= dr2+f(r)2dt92.
Here d9 denctes the canonical metric on the unit sphere o Mo, r is

the usual radial function on Mo and f(r) is the C function on [0, c)
satisfying

y(0)=0, f’(0)=l, f(r)O for r0.
3. Parallel displacements. For a tangent vector
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A-=l a’(p)a/ay(p) at p-h (E?=lye) e M,
the parallel displacement of A from p to o along the geodesic segment
5 joining o and p is denoted by F(A). Then, by the use of Jacobi
fields, we have

Lemma 1.

r
where r=(?= (y))/= the distance between o and p.

Remark 1. We note that g(A, (r)) a(p)(y/r) by the Gauss
Lemma.

Now, we define the new coordinate system on M by

x(p) exp (i 1, ., n)
r ](s)

for p e M, where r=(?= (y(p)y)/=the distance between o and p.
It is shown as follows that {x’,..., x} is a coordinate system of M.

Lemma 2. The map "MR defined by ’=uoh- is one to
one and C map, where u is the map MooR defined by

yu ..., x
and

exp r=(= (y))/.
r

Proof. Since h-:MMo is diffeomorphism, it is sufficient to
show thatu is one to one and Cmap. It is clear that u is one to
one on Mo and C in Mo-(0}. Let

ds

Since

f(r)
and limr_0F is uniquely determined as to be a positive constant, we
must show that each

y( r --1)’=--- f(r)
has a smooth extension across the origin. It is known ([2], [3]) that
f(r)= r+rl(r) and l(r) has a smooth extension across the origin. Thus

]= y( r -1)= -yl()
-r-i- r+ rl(r) 1 + rl(r)

has a smooth extension across the origin.
Now we have the parallel translation in terms of the new coor-

dinate system {x} by Lemma 1 and Remark 1.
Lemma :t. For a tangent vector A---Z=I b(p)(3/axg(p) at p e M,

we have
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F(A)-- F(O)f(r) ,=1. b*(P) (o)
exp (;:. ds ) 3:

f(s)
where r--the distance between o and p, and

F(0)-lim (l/r)exp (f:. ds .)--lim (1If(r))exp
r-o f(s) -o f()

Nwletp=exp(;ds)"Then,-f- p=(,. (xg)’ and so by Lemma

3, we have
Proposition. Let (M, o) be an n-dimensional model with a pole o.

Then

(1) If exp f(s) --p0< c, M is isometric to

D= {(x’, ..., x) ,.= (x)=p]}
with the Riemannian metric r(pYgo where go is the restriction of the
canonical Euclidean metric on R to D.

(2) If exp (f; ds ) , M is isometric to R with the Rieman-
f(s)

nian metric (p)go.
4. The Gauss map. Let N be an n-dimensional Riemannian

manifold isometrically immersed in an (n+ k)-dimensional model (M, o)
with a pole o (kl). Then, by Proposition in 3, N may be immersed
(not isometrically in general) in the Euclidean space E+ o dimension
n+k. Let G be the usual Gauss map in E+. By Lemma 3, we have

Lemma 4. Let N be an n-dimensional Riemannian anifold iso-
metrically immersed in an (n+ k)-dimensional model (M, o). Then the
following diagram is commutative

(N) v Sn; ;/r(O)
() S.-,(1/r(O)),

where (v) (1/r(p))v [or a unit normal ector at
and r are the same as in Proposition, and S+-’(a) is the sphere abo.ut
the origin in E+ o[ radius a.

Corollary. Since : e(N)(N) is a diffeoorphis, the
rank o[ G at equals the rank o[ G at () or all e (N).

If N is orientable and k=l, we can identify N with a component
of (N) and also the corresponding component of (N). Then
G: Nthe unit n-sphere about the origin in Mo is the Gauss map
based at o and Ge:NS(1) is the usual Gauss map in

Theorem. Let be an n-dimensional complete orientable
Riemannian manifold isometrically immersed in an (n+ 1)-dimensional
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model (M, o). Suppose that G has constant rankn-m on N
(1) If m=9 and N is compact, then N is diffeomorphic to the n-

sphere.
(2) If l<=n<=n- 1, then N is foliated by m-dimensional totally

umbilic submanifolds.
(3) If re=n, then N is a totally umbilic hypersurface.
Proof. (1) is clear.
Since the rank o G. equals the rank o G by corollary, N is

foliated by m-dimensional planes L in E/ intersected with M by
Lemma 2 o [1]. For each L, LM with the induced metric from
M is a totally umbilic submanifold. Thus (2) and (3) are verified.

Remark 2. If M is the hyperbolic space, each totally umbilic
submanifold in Theorem is a hyperbolic space of a certain constant
curvature (see [5]).
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