115. The Gauss Map in Models

By Hiroo MATSUDA

Department of Mathematics, Kanazawa Medical University

(Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1983)

Introduction. Let N be an n-dimensional Riemannian mani-1. fold isometrically immersed into a Euclidean (n+k)-space E^{n+k} $(k \ge 1)$ and $\mathcal{CV}_{E}(N)$ be the unit normal bundle of N in E^{n+k} . Then the Gauss map of $\mathcal{O}_{E}(N)$ into the unit sphere about the origin of E^{n+k} was given by Chern and Lashof [1]. J.L. Weiner [5] gave a generalization of this map as follows: Let N be an isometrically immersed n-dimensional Riemannian manifold into a complete (n+k)-dimensional Riemannian manifold. Suppose that for a point p of N, N does not intersect the cut locus of p. The parallel displacement of $v \in \mathcal{CV}_{M}(N)$ (=the unit normal bundle of N in M) along the shortest geodesic segment joining the foot point of v to p gives a mapping of $\mathcal{CV}_{\mathcal{M}}(N)$ into the unit sphere in the tangent space of M at p. This map is called the Gauss map on N based at p. R. Takagi [4] described an n-dimensional complete Riemannian N isometrically immersed into a Euclidean (n+1)-sphere S^{n+1} when the Gauss map on N based at a point S^{n+1} has constant rank. Furthermore, J. L. Weiner [5] showed similar results when the ambient space is a hyperbolic space of curvature -1 and also reproved Takagi's theorem in a simpler fashion. When the ambient space M is a model with a pole o, the cut locus of o is empty. So, for any isometrically immersed Riemannian manifold N into M, the Gauss map G_{M} on N based at o can be defined. In this note, we will study the Gauss map G_M and show the similar results to those of J.L. Weiner.

2. Preliminaries. Let (M, o) be an *n*-dimensional model with a pole o $(n \ge 2)$ and $h := \operatorname{Exp}_o : M_o \to M$ be the exponential map from the tangent space M_o at o of M onto M. Choosing an orthonormal basis $\{e_1, \dots, e_n\}$ on M_o , let $\{y^1, \dots, y^n\}$ be the normal coordinate system relative to this basis. Let g be the Riemannian metric on M. Then h^*g is a Riemannian metric on M_o and written by

$$h^*g = dr^2 + f(r)^2 d\Theta^2.$$

Here $d\Theta^2$ denotes the canonical metric on the unit sphere of M_o , r is the usual radial function on M_o and f(r) is the C^{∞} function on $[0, \infty)$ satisfying

f(0)=0, f'(0)=1, f(r)>0 for r>0.

3. Parallel displacements. For a tangent vector

H. MATSUDA

 $A = \sum_{i=1}^{n} a^{i}(p)\partial/\partial y^{i}(p)$ at $p = h\left(\sum_{i=1}^{n} y^{i}e_{i}\right) \in M$, the parallel displacement of A from p to o along the geodesic segment ζ joining o and p is denoted by $\Gamma(A)$. Then, by the use of Jacobi fields, we have

Lemma 1.

$$\Gamma(A) = \frac{f(r)}{r} \sum_{i=1}^{n} a^{i}(p)e_{i} + \left(1 - \frac{f(r)}{r}\right)g(A, \dot{\zeta}(r)) \sum_{i=1}^{n} \frac{y^{i}}{r}e_{i}$$

where $r = (\sum_{i=1}^{n} (y^i)^2)^{1/2} = the distance between o and p.$

Remark 1. We note that $g(A, \dot{\zeta}(r)) = \sum_{i=1}^{n} a^{i}(p)(y^{i}/r)$ by the Gauss Lemma.

Now, we define the new coordinate system on M by

$$x^{i}(p) := \frac{y^{i}(p)}{r} \exp\left(\int_{1}^{r} \frac{ds}{f(s)}\right) \qquad (i=1,\dots,n)$$

for $p \in M$, where $r = (\sum_{i=1}^{n} (y^{i}(p))^{2})^{1/2}$ = the distance between o and p. It is shown as follows that $\{x^{1}, \dots, x^{n}\}$ is a coordinate system of M.

Lemma 2. The map $\Psi: M \to R^n$ defined by $\Psi:=u \circ h^{-1}$ is one to one and C^{∞} map, where u is the map $M_o \to R^n$ defined by $u(\sum_{i=1}^n y^i e_i) = (x^1, \dots, x^n)$

$$x^{i}:=rac{y^{i}}{r}\exp\left(\int_{1}^{r}rac{ds}{f(s)}
ight), \qquad r=(\sum_{i=1}^{n}(y^{i})^{2})^{1/2}.$$

Proof. Since $h^{-1}: M \to M_o$ is diffeomorphism, it is sufficient to show that u is one to one and C^{∞} map. It is clear that u is one to one on M_o and C^{∞} in $M_o - \{0\}$. Let

$$F\left(\sum_{j=1}^{n} y^{j} e_{j}\right) := (1/r) \exp\left(\int_{1}^{r} \frac{ds}{f(s)}\right).$$

Since

$$\partial F/\partial y^i \!=\! F rac{y^i}{r^2} \Big(rac{r}{f(r)} \!-\! 1 \Big)$$

and $\lim_{r\to 0} F$ is uniquely determined as to be a positive constant, we must show that each

$$\eta^i := \frac{y^i}{r^2} \left(\frac{r}{f(r)} - 1 \right)$$

has a smooth extension across the origin. It is known ([2], [3]) that $f(r) = r + r^{3}l(r)$ and l(r) has a smooth extension across the origin. Thus

$$\eta^i \!=\! rac{y^i}{r^2} \Big(\!rac{r}{r\!+\!r^3 l(r)} \!-\! 1\Big) \!=\! rac{-y^i l(r)}{1\!+\!r^2 l(r)}$$

has a smooth extension across the origin.

Now we have the parallel translation in terms of the new coordinate system $\{x^i\}$ by Lemma 1 and Remark 1.

Lemma 3. For a tangent vector $A = \sum_{i=1}^{n} b^{i}(p)(\partial/\partial x^{i})(p)$ at $p \in M$, we have

The Gauss Map in Models

$$\Gamma(A) = \frac{F(0)f(r)}{\exp\left(\int_{1}^{r} \frac{ds}{f(s)}\right)} \sum_{i=1}^{n} b^{i}(p) \frac{\partial}{\partial x^{i}}(o)$$

where r = the distance between o and p, and

$$F(0) = \lim_{r \to 0} (1/r) \exp\left(\int_{1}^{r} \frac{ds}{f(s)}\right) = \lim_{r \to 0} (1/f(r)) \exp\left(\int_{1}^{r} \frac{ds}{f(s)}\right).$$

Now let $\rho = \exp\left(\int_{1}^{r} \frac{ds}{f(s)}\right)$. Then $\rho = (\sum_{i=1}^{n} (x^{i})^{2})^{1/2}$ and so by Lemma

3, we have

Proposition. Let (M, o) be an n-dimensional model with a pole o. Then

(1) If $\exp\left(\int_{1}^{\infty} \frac{ds}{f(s)}\right) = \rho_0 < \infty$, M is isometric to $D^n = \{(x^1, \dots, x^n) \mid \sum_{i=1}^n (x^i)^2 = \rho_0^2\}$

with the Riemannian metric $\tilde{r}(\rho)^2 g_0$ where g_0 is the restriction of the canonical Euclidean metric on \mathbb{R}^n to D^n .

(2) If $\exp\left(\int_{1}^{\infty} \frac{ds}{f(s)}\right) = \infty$, *M* is isometric to \mathbb{R}^{n} with the Rieman-

nian metric $\Upsilon(\rho)^2 g_0$.

4. The Gauss map. Let N be an n-dimensional Riemannian manifold isometrically immersed in an (n+k)-dimensional model (M, o) with a pole o $(k \ge 1)$. Then, by Proposition in § 3, N may be immersed (not isometrically in general) in the Euclidean space E^{n+k} of dimension n+k. Let G_E be the usual Gauss map in E^{n+k} . By Lemma 3, we have

Lemma 4. Let N be an n-dimensional Riemannian manifold isometrically immersed in an (n+k)-dimensional model (M, o). Then the following diagram is commutative

$$\begin{array}{c} \mathcal{CV}_{E}(N) & \xrightarrow{G_{E}} S^{n+k-1}(1) \\ \bar{\tau} & \downarrow \times 1/\tau(0) \\ \mathcal{CV}_{M}(N) & \xrightarrow{G_{M}} S^{n+k-1}(1/\tau(0)) \end{array}$$

where $\overline{\gamma}(v) := (1/\gamma(\rho))v$ for a unit normal vector v at $p = (x^1, \dots, x^n)$, ρ and γ are the same as in Proposition, and $S^{n+k-1}(\alpha)$ is the sphere about the origin in E^{n+k} of radius α .

Corollary. Since $\overline{\gamma}: \mathcal{CV}_{E}(N) \to \mathcal{CV}_{M}(N)$ is a diffeomorphism, the rank of G_{E} at v equals the rank of G_{M} at $\overline{\gamma}(v)$ for all $v \in \mathcal{CV}_{E}(N)$.

If N is orientable and k=1, we can identify N with a component of $\mathcal{CV}_{\mathcal{M}}(N)$ and also the corresponding component of $\mathcal{CV}_{\mathcal{E}}(N)$. Then $G_{\mathcal{M}}: N \rightarrow$ the unit *n*-sphere about the origin in M_o is the Gauss map based at o and $G_{\mathcal{E}}: N \rightarrow S^n(1)$ is the usual Gauss map in E^{n+1} .

Theorem. Let N be an n-dimensional complete orientable Riemannian manifold isometrically immersed in an (n+1)-dimensional

No. 8]

H. MATSUDA

model (M, o). Suppose that G_M has constant rank n - m on N ($0 \le m \le n$).

(1) If m=0 and N is compact, then N is diffeomorphic to the n-sphere.

(2) If $1 \le m \le n-1$, then N is foliated by m-dimensional totally umbilic submanifolds.

(3) If m=n, then N is a totally umbilic hypersurface.

Proof. (1) is clear.

Since the rank of G_M equals the rank of G_E by corollary, N is foliated by *m*-dimensional planes L^m in E^{n+1} intersected with M by Lemma 2 of [1]. For each L^m , $L^m \cap M$ with the induced metric from M is a totally umbilic submanifold. Thus (2) and (3) are verified.

Remark 2. If M is the hyperbolic space, each totally umbilic submanifold in Theorem is a hyperbolic space of a certain constant curvature (see [5]).

Acknowledgement. The author wishes to thank Prof. H. Kitahara, S. Yorozu and S. Nagamine for their useful advices.

References

- S. S. Chern and R. K. Lashof: On the total curvature of immersed manifolds. Amer. J. Math., 79, 306-313 (1957).
- [2] R. E. Greene and H. Wu: Function Theory on Manifolds Which Possesses a Pole. Lect. Notes in Math., vol. 699, Springer-Verlag (1979).
- [3] J. L. Kazdan and F. W. Warner: Curvature functions for open 2-manifolds. Ann. of Math., 99, 203-219 (1974).
- [4] R. Takagi: Gauss map in a sphere. Ködai Math. Sem. Rep., 22, 82-88 (1970).
- [5] J. L. Weiner: The Gauss map in spaces of constant curvature. Proc. Amer. Math. Soc., 38, 157-161 (1973).