32. Construction of Integral Basis. III

By Kōsaku OKUTSU

Department of Mathematics, Gakushuin University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1982)

Let $\mathfrak o$ be a complete discrete valuation ring with the maximal ideal $\mathfrak p=\pi\mathfrak o$, k its quotient field, f(x) a monic irreducible separable polynomial in $\mathfrak o[x]$ with degree n and θ a root of f(x) in an algebraic closure $\overline k$ of k. In Part II, we have defined *primitive divisor polynomials* (p.d.p.) $f_1(x), f_2(x), \dots, f_r(x)$ of θ , by means of which we have given an integral basis of $K=k(\theta)$ explicitly. We have denoted the degree of $f_i(x)$ by $m_i(\theta,k)$ $(i=1,\dots,r)$. As we consider $\mathfrak o$, k, f(x), and θ as fixed in this part, we shall write simply m_i for $m_i(\theta,k)$. We know $m_r=1, m_0=n$, and $m_i\mid m_{i-1}$ $(i=1,\dots,r)$.

Now we shall give a construction of these p.d.p. $f_i(x)$, $i=1, \dots, r$. We begin with "last p.d.p." $f_r(x)$ of degree 1, and proceed retrogressively: We shall obtain $f_{i-1}(x)$ from $f_r(x)$, $f_{r-1}(x)$, \dots , $f_i(x)$. $f_r(x)$ can be obtained as follows.

We fix a complete set of representatives V of $\mathfrak o$ mod $\mathfrak p$. By Hensel's lemma there exists a unique polynomial g(x) in $\mathfrak o[x]$ with coefficients in V which is irreducible mod $\mathfrak p$ and $f(x) \equiv g(x)^s \mod \mathfrak p$ where $s = \deg f/\deg h$. g(x) will be called the irreducible component of f(x) mod $\mathfrak p$. If its degree is greater than 1, then any monic polynomial with degree 1, for example x, is a last $\mathfrak p.d.\mathfrak p$. If g(x) is linear, put $g(x) = x - c_{\mathfrak p}$ ($c_{\mathfrak p} \in V$). It is clear that $\operatorname{ord}_{\mathfrak p}(\theta - c_{\mathfrak p}) = (\operatorname{ord}_{\mathfrak p}(f(c_{\mathfrak p})))/n$. When $n \mid \operatorname{ord}_{\mathfrak p}(f(c_{\mathfrak p}))$, $x - c_{\mathfrak p}$ is a last $\mathfrak p.d.\mathfrak p$. When $n \mid \operatorname{ord}_{\mathfrak p}(f(c_{\mathfrak p}))$, put $F_0(x) = f(x)$, $t_1 = (\operatorname{ord}_{\mathfrak p}(F_0(c_{\mathfrak p})))/n$, and $F_1(x) = \sum_{i=0}^n ((F_0^{(i)}(c_{\mathfrak p}))/i! \pi^{i_1(n-i)})x^i$. Then $F_1(x)$ is shown to be a monic polynomial in $\mathfrak p[x]$.

Let $g_1(x)$ be the irreducible component of $F_1(x)$ mod \mathfrak{p} . If deg $g_1(x) > 1$, then $x-c_0$ is a last p.d.p. If $g_1(x)$ is linear and equal to $x-c_1$ then consider $(\operatorname{ord}_{\mathfrak{p}}(F_1(c_1)))/n=t_2$. If $t_2 \in \mathbb{N}$, then $x-(c_0+c_1\pi^{t_1})$ is a last p.d.p. If $t_2 \in \mathbb{N}$, then we define $F_2(x)$ from $F_1(x)$ just as we have defined $F_1(x)$ from $F_0(x)$. We may obtain a last p.d.p. of the form $x-(c_0+c_1\pi^{t_1}+c_2\pi^{t_1+t_2})$, or we should continue further in the same way. This procedure ends after a finite number of steps.

Let α_i be a root of $f_i(x)$ in \bar{k} and let e_i , f_i be the ramification index, the residue class degree of the extension $k(\alpha_i)$ over k ($i=0,1,\dots,r$). We fix i ($1 < i \le r$), and assume that $f_i(x)$, $f_{i+1}(x)$, \dots , $f_r(x)$ are already obtained. Then the following propositions give e_{i-1} , f_{i-1} , and finally the theorem will determine $f_{i-1}(x)$.

Proposition 1. We put $l_i/t_i = \operatorname{ord}_{\mathfrak{p}}(f_i(\theta))$ where l_i , t_i are natural numbers such that $(l_i, t_i) = 1$ for $i = 1, \dots, r-1$, and for i = r when $\operatorname{ord}_{\mathfrak{p}}(f_r(\theta)) > 0$. If $\operatorname{ord}_{\mathfrak{p}}(f_r(\theta)) = 0$, we put $l_r = 0$, $t_r = 1$. Then e_{i-1} coincides with the least common multiple of t_i , t_{i+1} , \dots , t_r $(1 \le i \le r)$.

Now let m be any integer such that $1 \le m < n$. We put $H_{i,m}(x) = f_i(x)^l \sum_{j=i+1}^r f_j(x)^{q_j(m)}$ where $l = [m/m_i]$, and $g_j(m)$ $(j=1, \dots, r)$ are integers defined in Theorem 1 of Part II, satisfying $0 \le q_i(m) < m_{j-1} / m_j$ $(j=1,\dots,r)$ and $m = \sum_{j=1}^r q_j(m)m_j$. Then the degree of $H_{i,m}(x)$ is equal to m.

Proposition 2. The notations being as above, we put $\mu_{i,m} = \operatorname{ord}_{\mathfrak{p}}(H_{i,m}(\theta))$, and $S_0^i = \{m(0 \le m < n) \mid \mu_{i,m} = [\mu_{i,m}]\}$ $(1 \le i \le r)$. Then the residue class degree f_{i-1} of the extension $k(\alpha_{i-1})$ over k is equal to the dimension of the vector space over $\mathfrak{o}/\mathfrak{p}$ generated by the set $\{(H_{i,m}(\theta)/\pi^{[\mu_{i,m}]}) \mod \mathfrak{P} \mid m \in S_0^i\}$ where \mathfrak{P} is the maximal ideal of \mathfrak{o}_K . (An algorithm can be given to compute this dimension from f(x).)

We put $S_t^i = \{m \in \{0,1,\cdots,n-1\} \mid \mu_{t,m} - [\mu_{t,m}] = t/e_{t-1}\} \ (t=0,1,\cdots,e_{t-1}-1).$ Then we have $S_t^i \neq \phi$ for any $i \ (1 \leq i \leq r)$, and $t \ (0 \leq t < e_{t-1})$, and we have $\{0,1,\cdots,n-1\} = S_0^i \cup S_1^i \cup \cdots \cup S_{e_{t-1}-1}^i \ (\text{direct sum}).$ Now we will define a sequence $\{F_{t-1,j}(x)\}_{j=0,1,\cdots}$ of monic polynomials with degree m_{t-1} as follows. We put $F_{t-1,0}(x) = f_t(x)^{d_t}$ where $d_t = m_{t-1}/m_t$, and put $A_{t-1,0} = \operatorname{ord}_{\mathfrak{p}}(F_{t-1,0}(\theta))$. Assume $F_{t-1,j-1}(x)$ has been defined. Then we put $A_{t-1,j-1} = \operatorname{ord}_{\mathfrak{p}}(F_{t-1,j-1}(\theta))$. For any $m \ (1 \leq m < m_{t-1})$, let $H_{t,m}(x) = \prod_{k=t}^r f_k(x)^{q_k(m)}$ and $\mu_{t,m} = \operatorname{ord}_{\mathfrak{p}}(H_{t,m}(\theta))$ as above. First we assume that next two conditions (i), (ii) are satisfied.

(i)
$$\Lambda_{i-1,j-1} - [\Lambda_{i-1,j-1}] = \frac{t}{e_{i-1}}$$
 for some $t \in N$ ($0 \le t < e_{i-1}$).

(ii)
$$\left(\frac{H_{i,m_0}(\theta)}{\pi^{\lfloor \mu_i,m_0 \rfloor}}\right)^{-1} \left(\frac{F_{i-1,j-1}(\theta)}{\pi^{\lfloor M_{i-1,j-1} \rfloor}}\right) \mod \mathfrak{P}$$
 is contained in the vector

space over $\mathfrak{o}/\mathfrak{p}$ generated by the set

$$\left\{\!\left(\frac{H_{i,m_0}\!(\theta)}{\pi^{\llbracket\mu_i,m_0\rrbracket}}\right)^{\!-1}\!\!\left(\frac{H_{i,m}\!(\theta)}{\pi^{\llbracket\mu_i,m\rrbracket}}\right)\operatorname{mod}\,\mathfrak{P}\!\mid\! m\in S^i_t\ \text{and}\ 0\!\leq\! m\!<\! m_{i-1}\!\right\}$$

where m_0 is some element of S_t^i such that $0 \le m_0 < m_{i-1}$. In this case we define

$$F_{i-1,j}(x) = F_{i-1,j-1}(x) - \sum_{\substack{m \in S_t^i \\ 0 \le m < m_{t-1}}} a_m \pi^{[A_{t-1,j-1}] - [\mu_t, m]} H_{i,m}(x)$$

where a_m $(m \in S_t^i, 0 \le m < m_{i-1})$ are elements of $V(\subset \mathfrak{o})$ which are uniquely determined by the condition:

$$\left(\frac{H_{i,m_0}(\theta)}{\pi^{\llbracket \mu_{i,m_0}\rrbracket}}\right)^{-1} \left(\frac{F_{i-1,j-1}(\theta)}{\pi^{\llbracket A_{i-1,j-1}\rrbracket}}\right) \equiv \sum_{\substack{m \in S_i^{\ell} \\ m < m_i}} a_m \left(\frac{H_{i,m_0}(\theta)}{\pi^{\llbracket \mu_{i,m_0}\rrbracket}}\right)^{-1} \left(\frac{H_{i,m}(\theta)}{\pi^{\llbracket \mu_{i,m}\rrbracket}}\right) \pmod{\mathfrak{P}}.$$

When one of the above conditions (i), (ii) is not satisfied, we put $F_{i-1,j}(x) = F_{i-1,j-1}(x)$.

Theorem 1. The notations being as above, there exists some natural number s such that $F_{i-1,s}(x) = F_{i-1,s+1}(x)$. For this s, $F_{i-1,s}(x)$ is an (i-1)-th primitive divisor polynomial of θ over k.

In Part IV we will give an explicit formula for an integral basis when $\mathfrak o$ is a principal ideal domain.

Reference

[1] K. Okutsu: Construction of integral basis I; II. Proc. Japan Acad., 58A, 47-49; 87-89 (1982).