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We study a system of microdifferential (-pseudodifferential)
equations. We assume that the characteristic variety V of is the
union of two regular submanifolds with non-involutory intersection.
We also assume that /has regular singularities along V. (Precise
assumptions will be given below.) In 1, we give a canonical form of
/in the complex domain. Applying this result, we study in 2 the
branching of supports of microfunction solutions of under the ad-
ditional assumption that /is hyperbolic. Details of this article will
appear elsewhere.

1. A canonical form of a system with regular singularities
along its non.involutory characteristics. Let X be an n-dimensional
complex manifold and T*X be its cotangent bundle. We identify the
zero section of T*X with X. Let z=(z, ..., z,) be a local coordinate
system of X. Then (z, (, dz})= (z, )= (z, ..., z, , ..., ) denotes a
point of T*X. We denote by the sheaf on T*X of microdifferential
operators (of finite order). Note that ’ is denoted by in [6]. Let
(]) be the sheaf on T*X of holomorphic functions homogeneous of
degree ] with respect to the fiber coordinates. We denote by L’(]) the
sheaf of microdifferential operators of order at most ]. There is a
natural homomorphism

as" (j)-->O(]) (j)/(]- 1).
I:f. P e (])-(]--1), we call a(P)--as(P) the principal symbol o P. For
a homogeneous (=conic) involutory analytic subset V o:[ T’X--X, we
set I,(])-- {f 0(]) fl---O}. Then O,(O)--(C)(O)/I,(O) is a coherent sheaf
o rings on V. We set flv--{P e ’(1) al(P) Iv(l)) and denote by v
the subring o ’ generated by qv.

Let o--[dz-+-... 2:-ndz be the undamental l-form on T*X. A
homogeneous involutory submaniold o T*X--X is said to be regular
if the pull back o w to it vanishes nowhere.

For a submaniold W of T*X and a point p o W, we say that p
is a point of rank 2r in W if the rank o the skew-symmetric bilinear
form d on T;W is of rank 2r. If each point of W is a point of rank
2r in W, we say that W is of rank 2r and write rank W--2r.
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Now let /be coherent Cx-module (i.e., system of microdif-
ferential eluations) defined on an open subset 9 of T*X--X let V-- V,
V be a homogeneous involutory analytic subset of /2. We assume

the following conditions"
(A.I) V and V are d-codimensional homogeneous regular in-

volutory submanifolds of tg, and V0= V, V. is non-singular.

V and V. intersect normally, i.e., TpV TpV= T;Vo for(A.2)
any p e V0.

(A.3)
(A.4)
(A.5)

dim V dim V-- dim V0+ 1.
rank V rank V=rank Vo.
/ has regular singularities along V; i.e., any coherent

sub-,-module of //that is defined on an open subset of/2 is coherent
,over (0). (See [5], [3].)

Let P0 be a point of V0. We can find a neighborhood U of P0 and
.a coherent sub-’,-module t/0 of / such that ’x/0 /l. In view
of (A.5), we see that 0=,/’(--1)/0 is a coherent C)(0)-module.
We make the additional assumption"

(A.6) 2/0 is a locally free C),(0)-module of rank m.
Let p be an arbitrary point in V0 U. Then (A.6) ensures that

there exist generators u, ..., u of / over C(0) in a neighborhood of
p whose residue classes are free generators of0 over C),(0). In view
of (A.1)-(A.4), we can find two microdifferential operators P and P.
in a neighborhood o p such that a(P)=0 on V (]= 1, 2) and that the
Poisson bracket {a(P), a(P)} never vanishes on Vo. Let P be of order

l and set 1--li+l. Assumption (A.5) guarantees the existence of A,
e ’(1--1) (i, 2"= 1, ..., m) defined near p such that

PIPU: Au (i= 1, ..., m).
j--1

Setting

a(p)=at_(A)(p)/{a(P), a(P)}(p),
we define a polynomial e in by

e(2, p, q/0) det (,I / (a(p))<,<=,)
here I is the unit matrix o deree m. We can easily see that e is
independent o the choice of operators P1 and P., and generators
u, ..., u of /0 mentioned above. Thus e1(2, p, /0) is well-defined
or p e Vo U.

Remark. Interchangin V and V, we can define e in the same
manner and have the relation

el(], P, o)-- (-- 1)’e,( -- 1, p, 4/o).
Let =, ..., be the roots of the eluation e(, Po, /0)= 0 in .

For each complex number , we define a set J() by

J(2)={] e {1, ..., m}; 2-2 e Z}.
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Put m(2)= J(2) (the cardinal number o J(2)). Further, we set
J(0, 1)= {] e J(0); 2< 0}, J(0, 2)= {] e J(0); 20},

and m(0, i)-J(0, i) or i= 1, 2. Put
A={2 e C; -1<Re 2<=0,

Note that
m--- m(2), m(0)-- m(0, 1) + m(0, 2).

We use the notation D=(D, ...,D) with D=3/3z and set z’
=(z+l, ..., Zn) and D’=(D+I, ..., Dn).

On the above assumptions we have the following
Theorem 1. There exists a quantized contact transformation

associated with a local contact transformation of T*X such that
is isomorphic to () as an x-module. Here is a system defined
on a neighborhood of (p0)=(0, dzn) which takes the following form"

" (ziDI()--A)v=D2v Dv=0
here A is an (m(2), m(2)) matrix of microdifferential operators of order
at most 0 defined near (0, dzn), and v is a column vector of m(2) un-
known functions. Moreover, A has the form A=A(z’, D’) for =0,
while Ao has the form

A0= |All(z’, D’) A2(z’, 0’)01 ][zlA2l(z’, D’) A(z’, D’)
with A being an (m(O, i), re(O, ])) matrix of microdifferential oper-
ators. In addition, all the eigenvalues of ao(A)(O, dz) eual 2 if 2=/=0;
all the eigenvaues of ao(A)(O, dz) are --1, and those of ao(A)(O, dz)
are O.

Remark. When m--l, this theorem has been provecl by Kashi-
war-Kawai-Oshima [4, Th. 3]. To prove Theorem 1, we use methods
due to Kashiwara-Oshima [5].

2. Branching of supports of microfunction solutions. Let M
be an n-dimensional real analytic manifold and X be its complexifica-
tion. We denote by T*X=/-1T*M the conormal bundle of M in
T*X. Let C denote the shea on T*X o microunctions.

Let /be a coherent z-module defined on an open subset 9 o
T’X--X; let V=V V be homogeneous involutory analytic subset
of 9. Let the assumptions (A.1)-(A.6) be satisfied. Moreover, we
assume

(A.7) V and V2 are rel; i.e., V is a complexification of the real
analytic manifold V=V T*X 2or ]= 1, 2.

Let P0 be a point in V0=V V and let 2, ..., 2 be the roots of
the ecluation e(2, P0, 5/0)=0 in 2. Then we also assume

(A.8) 2 e { --1, 2, ...} or]=l, ..., m.
Theorem 2. Under the assumptions (A.1)-(A.8), we have
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5(o (/, F(,))o= 0.

Moreover, if e Z for ]=1, ..., m, we have
3 (, p,(C,)),0 0

for any i e z and k= 1, 2.
Let us denote by b(po) the bicharacteristic of V through P0 for

=1, 2. Assumptions (A.1)-(A.4) and (A.7) imply that b(po) and b(po)
intersect normally and their intersection is 1-codimensional both in
b(po) and in b(po). Hence b(po)--b(po)=b(po)--Vo consists of two
connected components b.(po) and bT(po) in a neighborhood of P0 for ], k

1, 2 and j=/=k. Here the choice of b(po) and b7(po) is arbitrary.
Theorem :. Suppose that (A.1)-(A.8) are satisfied. Then there

exists a fundamental neighborhood system {U,}__,,... of Po in T*X
which satisfies the following" If f is a microfunction solution of
(i.e., a section o a(o, (qZ, C)) defined on some U, such that

b;(p(,) ( Usupp f, (b(po) b;(po)) ( Utsupp f,
then f vanishes on a neighborhood of (b(po) J b(po)) U,.

For a subset S of T*uX, we set R/S= (cp c e R, cO, p e S}.
Theorem 4. Let l and V satisfy (A.1)-(A.7). Then there exist

a neighborhood U of Po in T*X and a microfunction solution f of
defined on U’ such that

R b(po) U’supp fR/(bl(Po) [.J b(po)) U’.
Moreover, if e {-1, -2, ...} for some ] e {1, ...,m}, we can choose

f so that
supp f-=R+(b(po) [3 b(po)) U’.

Corollary. Let P, and P. be microdifferential operators of order
l, and l respectively, defined on a neighborhood of Po e T*X--M. Sup-
pose that

a(P)(po)=a(P)(po)=O, {a(P), a(P)}(po)=/=O,
and that a(P) and a(P) are real valued on T*X. Let A,s (i, j= 1, ...,
m) be microdifferential operators of order at most l-- 1 l, + l.-- 1 de-
fined near Po, and set A=(A). We assume that no eigenvalue of the
matrix (a_(A)(po)/{a(P,), a(P)}(po)) is a negative integer. Then the
conclusions of Theorems 3 and 4 are valid for the system

(PPI q- A)u= 0
with V={a(P)=O} for k= l, 2. Here u is a column vector of m un-
known functions.

Remark. When m=l, an analogue in the C-category of this
corollary has been obtained by Ivrii [2] and Hanges [1].

Example. Set x=(x, ..., x) e R and Ds=3/3xs. We put
P= (D-x(Dq- q-D))I/Q

here Q is an (m, m) matrix of microdifferential operators of order at
most 1 defined on a neighborhood p0=(0, /-ldx)e /-1T*R.
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Set bk(P0)= {(x, /-- 1) e /-- 1T*R; x=(--1)x/2, x2 x_l=0,
=--(--1)x, _=0, $=1} and b;(po)={(x, /- 1) e b(p0)

+x)0} or k=l, 2. Assume that no eigenvalue o the matrix z(Q)(po)
belongs to { +_ /- 1, _+ 3/- 1, 5/- 1, }. Let f be a column vector
of m microfunctions defined on a neighborhood of P0 such that Pf=O.
Under these assumptions, if f vnishes on any two of half-bichar-
acteristics b?(po), b;(po), b(po), and b;(po), then f vanishes on a neigh-
borhood o P0.
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