47. Some Characterization of the Schwartz Space and an Analogue of the Paley-Wiener Type Theorem on Rank 1 Semisimple Lie Groups

By Takeshi KAWAZOE Keio University (Communicated by Kôsaku Yosida, M. J. A., June 12, 1979)

In this paper we shall reform the results of Harish-Chandra [4], [5], [6] and obtain an analogue of Paley-Wiener type theorem on real rank one semisimple Lie groups.

In the first place we shall define a slightly different Fourier transform on τ -spherical functions on the Schwartz space $\mathcal{C}(G, \tau)$ and determine its image under this transform. Consequently we obtain a special case of J. Arthur's results restricted to τ -spherical functions. Next we assume that real rank of G is one. Under this assumption, we study Paley-Wiener type theorem, i.e., we shall obtain a precise description of the image of compactly supported functions in $\mathcal{C}(G, \tau)$ with respect to the above transform. The method we shall use is the same as in O. Campoli [2].

1. Notation. Let G be a real reductive Lie group with compact center and be in class \mathcal{H} (cf. V. S. Varadarajan [9]). Let K be a maximal compact subgroup of G. By a parabolic pair in G we mean a pair (P, A) where P is a parabolic subgroup of G and A is its split component. Let P = MAN and $\mathfrak{p} = \mathfrak{m} + e + \mathfrak{n}$ be the Langlands decomposition of P and its Lie algebra. Let $\tau = (\tau_1, \tau_2)$ be a unitary double representation of K on a finite dimensional Hilbert space V which satisfies the assumptions in Harish-Chandra [6]. Let τ_{M} be a representation of $K_M = K \cap M$ that is the restriction of τ to K_M . Then we can define the V-valued Schwartz space $\mathcal{C}(G, V)$ on G and the space of τ spherical functions $\mathcal{C}(G, \tau)$ as usual. In the same way we can also define $\mathcal{C}(M, V)$ and $\mathcal{C}(M, \tau_{M})$ respectively (cf. Harish-Chandra [4]). Let $\mathcal{E}_{2}(M)$ be the discrete series of M and \mathcal{H}_{w} be the smallest closed subspace of L_{z} -space on M containing all matrix coefficients of ω (cf. Harish-Chandra [5]). Let $L = {}^{\circ}C(M, \tau_M)$ be the space of cusp forms on M of the type τ_{M} . Then dim $L < \infty$ and L is an orthogonal sum of $L(\omega)$ for $\omega \in \mathcal{E}_2(M)$ where $L(\omega) = L \cap (\mathcal{H}_{\omega} \otimes V)$. Let W = W(G/A) be a Weyl group of (G, A) and $W(\omega)$ be a subset of W which consists of $s \in W$ such that $s\omega = \omega$ for $\omega \in \mathcal{E}_2(M)$. Let \mathcal{F} be the dual space of the Lie algebra of A. We shall regard \mathcal{F} as a Euclidean space and define the Schwartz space on it as usual which denotes $\mathcal{C}(\mathcal{G})$. We define r=r(G/A)=r(P),

c = c(G/A) = c(P) and $\mu(\omega, \nu)$ as usual (cf. Harish-Chandra [6]).

Other notations we shall use are the same as in Harish-Chandra's papers [4], [5], [6].

2. Orthonormal basis in L. Now we fix a parabolic subgroup P=MAN. Then $L={}^{\circ}\mathcal{C}(M, \tau_{M})$ can be decomposed as

$$L = \bigoplus_{1 \le j \le m} \bigoplus_{s_j \in W - W(\omega_j)} L(s_j \omega_j)$$

where $\omega_j \in \mathcal{E}_2(M)$ for $1 \leq j \leq m$.

Next we shall choose an orthonormal basis of $L(\omega_j)$ $(1 \le j \le m)$ as follows;

(2.2) $\{\phi_i^j, 1 \le i \le n_j \text{ where } n_j = \dim L(\omega_j)\}$ $(1 \le j \le m).$ We denote $\phi_i^j = e_k$ where $k = n_1 + n_2 + \cdots + n_{j-1} + i$ $(1 \le k \le n = n_1 + n_2 + \cdots + n_m).$

3. Definition of transform. For $f \in \mathcal{C}(G, \tau)$ and $\psi \in {}^{\circ}\mathcal{C}(M, \tau_{M})$ we define the following transform;

(3.1)
$$\hat{f}(\psi,\nu) = (c^2 r)^{-1} (f, E(P:\psi:\nu:\nu)) \\ = (c^2 r)^{-1} \int_{\mathcal{G}} (f(x), E(P:\psi:\nu:x)) dx \qquad (\nu \in \mathcal{F})$$

where $E(P: \psi: \nu: x)$ is an Eisenstein integral and (,) under the integral is a positive definite continuous Hermitian form on V which is invariant under τ .

Next for $\alpha \in \mathcal{C}(\mathcal{F})$ and $\psi \in {}^{\circ}\mathcal{C}(M, \tau_{M})$ we define,

(3.2)
$$\hat{\alpha}(\psi, x) = \int_{F} \mu(\omega, \nu) E(P: \psi: \nu: x) \alpha(\nu) d\nu \quad (x \in G).$$

Then for fixed $\psi \in L(\omega)$, $f \mapsto \hat{f}$ is a continuous map of $\mathcal{C}(G, \tau)$ into $\mathcal{C}(\mathcal{F})$ and $\alpha \mapsto \hat{\alpha}$ is a continuous map of $\mathcal{C}(\mathcal{F})$ into $\mathcal{C}(G, \tau)$ (cf. Harish-Chandra [6]).

Now we shall define a slightly different Fourier transform on $\mathcal{C}(G, \tau)$ as follows;

(3.3) $E_A(f) = (\hat{f}(e_1, \nu), \hat{f}(e_2, \nu), \dots, \hat{f}(e_n, \nu)) \quad (\nu \in \mathcal{F}).$ If we put, $E_j(f) = (\hat{f}(e_{k_{j+1}}, \nu), \hat{f}(e_{k_{j+2}}, \nu), \dots, \hat{f}(e_{k_{j+n_j}}, \nu))$ where $k_j = n_1 + n_2$ $+ \dots + n_{j-1}$ and $\nu \in \mathcal{F}$, then we can write E_A as

(3.4)
$$E_{A}(f) = (E_{1}(f), E_{2}(f), \cdots, E_{m}(f)).$$

Then it is clear that $E_{A}(f)$ is in $\mathcal{C}(\mathcal{F})^{n}$ and $E_{j}(f)$ is in $\mathcal{C}(\mathcal{F})^{n_{j}}$ for $1 \leq j \leq m$.

4. Main results. Let V be an arbitrary element in $\mathcal{C}(\mathcal{F})^n$. Then V can be written as follows;

$$(4.1) V = (V_1, V_2, \cdots, V_m)$$

where V_j is an element in $\mathcal{C}(\mathcal{F})^{n_j}$ $(1 \le j \le m)$. Now we shall define two subspaces of $\mathcal{C}(\mathcal{F})^n$. Let $\mathcal{C}(\mathcal{F})^n_*$ denote the closed subspace of $\mathcal{C}(\mathcal{F})^n$ consisting of elements which satisfy the following relation,

(4.2)
$$V_{j}(s^{-1}\nu)^{t} = \overline{C_{P|P}(s;s^{-1}\nu)} V_{j}(\nu)^{t}$$
for all $s \in W(\omega_{j})$ $(1 \le j \le m)$ and $\nu \in \mathcal{F}$,

206

where V_j^i is the transposed vector of V_j $(1 \le j \le m)$ and $^{\circ}C_{P|P}(s; s^{-1}\nu)$ is a unitary operator which maps $L(\omega)$ onto $L(s\omega)$ $(s \in W)$ (cf. Harish-Chandra [6]). We regard this operator as a matrix operator on $L(\omega)$ with respect to the basis in (2.2) and denote the complex conjugate by ——.

Let $\mathcal{H}(\mathcal{F})^n_*$ denote the subspace of $\mathcal{C}(\mathcal{F})^n_*$ consisting of elements V whose each component v^j_i ($V_j = (v^j_1, v^j_2, \dots, v^j_{n_j})$, $1 \le j \le m$) extends to the holomorphic function which is an exponential type and satisfies the following condition; if there exists a relation,

(4.3)
$$\sum_{i,j,t} C_{i,j,t} \left(\frac{d^{m_t}}{d\nu^{m_t}} \right) \Big|_{\nu = \nu_t} E(P:\phi_i^j:\nu:x) = 0$$

where m_t is a non-negative integer, $\nu_t \in (\mathcal{F})_c$ (the complexification of \mathcal{F}) and $C_{i,j,t}$ is in C, then

(4.4)
$$\sum_{i,j,t} C_{i,j,t} \left(\frac{d^{m_t}}{d\nu^{m_t}} \right) \Big|_{\nu=\nu_t} v_i^j(\nu) = 0.$$

Now we shall decompose $\mathcal{C}(G, \tau)$. Let $\Gamma_1, \Gamma_2, \dots, \Gamma_r$ be a complete set of θ -stable Cartan subgroups of G, no two of which are conjugate and put $A_i = (\Gamma_i)_R$ (the vector part of Γ_i) for $1 \le i \le r$. Let $P_i = M_i A_i N_i$ be a parabolic subgroup whose split component is A_i $(1 \le i \le r)$. Let $\mathcal{C}_i(G, \tau)$ denote the closed subspace of $\mathcal{C}(G, \tau)$ consisting of all f satisfying $f^{(P')} \sim 0$ unless A' (P' = M'A'N') is conjugate to A_i underK. Then $\mathcal{C}(G, \tau)$ is decomposed as follows (cf. Harish-Chandra [6]); (4.5) $\mathcal{C}(G, \tau) = \mathcal{C}_1(G, \tau) \oplus \mathcal{C}_2(G, \tau) \oplus \cdots \oplus \mathcal{C}_r(G, \tau)$ (topological direct sum). When we apply the above consideration to

 P_i $(1 \le i \le r)$, we shall use the notation such that E_{A_i}, \mathcal{F}_i and $n^{(i)}$ instead of E_A, \mathcal{F} and n. When Γ_i is a compact Cartan subgroup, then $C_i(G, \tau)$ coincides with $^{\circ}C(G, \tau)$ and E_{A_i} is the identity mapping.

Theorem 1. If Γ_i is not compact, then the mapping E_{A_i} is a homeomorphism of $C_i(G, \tau)$ onto $C(\mathcal{F}_i)^{n}_*^{(i)}$.

$$\mathcal{C}(G, \tau) = \mathcal{C}_{1}(G, \tau) \oplus \mathcal{C}_{2}(G, \tau) \oplus \cdots \oplus \mathcal{C}_{r}(G, \tau)$$

$$E_{A_{1}} \downarrow E_{A_{2}} \downarrow E_{A_{r}} \downarrow$$

$$\mathcal{C}(\mathcal{F}_{1})_{*}^{n(1)} \oplus \mathcal{C}(\mathcal{F}_{2})_{*}^{n(2)} \oplus \cdots \oplus \mathcal{C}(\mathcal{F}_{r})_{*}^{n(r)}$$

Theorem 2. Assume that the real rank of G is equal to one. Then the mapping E_A is a homeomorphism of $\mathcal{C}_A(G, \tau)$ onto $\mathcal{C}(\mathfrak{P})^n_*$. An element V in $\mathcal{C}(\mathfrak{P})^n_*$ belongs to $\mathcal{H}(\mathfrak{P})^n_*$ if and only if there exists a function f in $C^\infty_c(G, \tau)$ such that $V = E_A(f)$. If rank $K \neq \operatorname{rank} G$, then $^\circ\mathcal{C}(G, \tau)$ = 0.

$$\mathcal{C}(G,\tau) = {}^{\circ}\mathcal{C}(G,\tau) \oplus \mathcal{C}_{A}(G,\tau)$$

$$E_{A} \downarrow$$

$$\mathcal{C}(\mathcal{F})^{n}_{*}$$

Remark 1. In Theorem 1 we have a following inversion formula for $f \in \mathcal{C}(G, \tau)$;

$$f(x) = \sum_{p=1}^{r} \sum_{j \neq p = 1}^{m^{(p)}} |W^{(p)}(\omega_{j^{(p)}}^{(p)})|^{-1} \sum_{i \neq p = 1}^{n^{i}_{j} \neq p} \int_{\mathcal{F}_{p}} \mu^{(p)}(\omega_{j^{(p)}}^{(p)}, \nu_{p}) \\ \times E(P_{p}; \phi_{i^{(p)}}^{i^{(p)}}; \nu_{p}; x) \hat{f}(\phi_{i^{(p)}}^{i^{(p)}}, \nu_{p}) d\nu_{p}.$$

Remark 2. In Theorem 2 if we put $\tau_1 = \tau_2 = \text{trivial representation}$ and $V = \mathcal{O}$, then Theorem 2 coincides with the result of S. Helgason [7] and R. Gangolli [3]. In the same way if we put $\tau_1 = \text{trivial represen-}$ tation and $\tau_2 = \text{arbitrary}$, then Theorem 2 coincides with a theorem of S. Helgason [8].

Remark 3. In Theorem 2 we can obtain a relation between a size of a support of a compactly supported function and an exponential type of its Fourier transform as usual.

Remark 4. Using Theorem 2, we have obtained Paley-Wiener type theorem on $\mathcal{C}(G)$, when real rank of G is one. We shall describe this result in a next article.

References

- J. Arthur: Harmonic analysis of tempered distributions on semisimple Lie groups of real rank 1. Thesis, Yale Univ. (1970).
- [2] O. Campoli: The complex Fourier transform for rank-1 semisimple Lie groups. Thesis, Rutgers Univ. (1977).
- [3] R. Gangolli: On the Plancherel formula and Paley-Wiener theorem for spherical functions on semisimple Lie groups. Ann. Math., 93(2), 150-165 (1971).
- [4] Harish-Chandra: Harmonic analysis on real reductive groups. I. J. Func. Anal., 19, 104-204 (1975).
- [5] ——: Ditto. II. Inv. Math., 36, 1–55 (1976).
- [6] ——: Ditto. III. Ann. Math., 104, 117-201 (1976).
- [7] S. Helgason: An analogue of Paley-Wiener theorem for the Fourier transform on certain symmetric spaces. Math. Ann., 165, 297-308 (1965).
- [8] —: A duality for symmetric spaces with applications to group representations. II. Adv. Math., 22, 187-219 (1976).
- [9] V. S. Varadarajan: Harmonic analysis on real reductive groups. Lect. Notes in Math., vol. 576, Springer-Verlag (1977).