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In this paper we shall reform the results of Harish-Chandra [4],
[5], [6] and obtain an analogue of Paley-Wiener type theorem on real
rank one semisimple Lie groups.

In the first place we shall define a slightly different Fourier trans-
form on z-spherical functions on the Schwartz space C(G, r) and deter-
mine its image under this transform. Consequently we obtain a special
case of J. Arthur’s results restricted to rz-spherical functions. Next
we assume that real rank of G is one. Under this assumption, we
study Paley-Wiener type theorem, i.e., we shall obtain a precise de-
scription of the image of compactly supported functions in C(G, ) with
respect to the above transform. The method we shall use is the same
as in O. Campoli [2].

1. Notation. Let G be a real reductive Lie group with compact
center and be in class 4 (ef. V. S. Varadarajan [9]). Let K be a
maximal compact subgroup of G. By a parabolic pair in G we mean
a pair (P, A) where P is a parabolic subgroup of G and 4 is its split
component. Let P=MAN and p=m+e—+n be the Langlands decom-
position of P and its Lie algebra. Let c=(z,,) be a unitary double
representation of K on a finite dimensional Hilbert space V which
satisfies the assumptions in Harish-Chandra [6]. Let ¢, be a represen-
tation of K,=K N M that is the restriction of r to K,,. Then we can
define the V-valued Schwartz space C(G, V) on G and the space of ¢-
spherical functions C(G, ) as usual. In the same way we can also define
CM, V) and C(M, z,,) respectively (cf. Harish-Chandra [4]). Let &,(M)
be the discrete series of M and .4, be the smallest closed subspace of
L.-space on M containing all matrix coefficients of o (cf. Harish-
Chandra [5]). Let L=°C(M, r,) be the space of cusp forms on M of the
type z. Then dim L< oo and L is an orthogonal sum of L(w) for
o € E,(M) where L(w)=LN(H,QV). Let W=W(G/A) be a Weyl group
of (G, A) and W(w) be a subset of W which consists of s e W such that
sw=w for we &,(M). Let F be the dual space of the Lie algebra of A.
We shall regard & as a Euclidean space and define the Schwartz space
on it as usual which denotes C(¥). We define r=r(G/A)=r(P),
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c=c(G/A)=c(P) and p(o,v) as usual (cf. Harish-Chandra [6]).

Other notations we shall use are the same as in Harish-Chandra’s
papers [4], [5], [6].

2. Orthonormal basis in L. Now we fix a parabolic subgroup
P=MAN. Then L=°C(M,r,) can be decomposed as
2.1 L= & @ L(so)

1Sj<m s;EW~W(wy)

where o, € &,(M) for 1<j<m.

Next we shall choose an orthonormal basis of L(w,) (1<j<m) as
follows ;
2.2) {1, 1<i<n, where n,=dim L(e,)} a<i<m).
We denote ¢/ =e, where k=n,+n,~+ - - +n,,+i A<k<n=n+n+- - -
+ %)

3. Definition of transform. For fe(C(G,t) and + € °C(M, ;)
we define the following transform;

F@, =N, E@: :v: 2)

— (&) L F@), EP:v:v:a)ds  (vedF)
where E(P: 4 :v: z) is an Eisenstein integral and (,) under the integral
is a positive definite continuous Hermitian form on V which is invariant

under z.
Next for ¢ e C(F) and + € °C(M, z,,) we define,

3.2) &(pr, 1) = L W, DE@: viv: Da®dy (e 6.

Then for fixed v e L(w), f—f is a continuous map of C(G,7)
into C(¥) and a4 is a continuous map of C(F)into C(G, z) (cf. Harish-
Chandra [6]).

Now we shall define a slightly different Fourier transform on
C(G, ) as follows;

(3.3) EA(f)=(f(61, V)’f(ezs V), e ’f(em ”)) (” € 9.)-

If we put’ Ej(f)=(f(ek/+u v)’f(ekj+2’ ”): et ’f(ekj+nj’ 1")) where kj=n1+n2
+---+4mn,_, and v e F, then we can write E, as

3.4 E(N=E U, Ef), -+, E.(/).

Then it is clear that E,(f) is in C()" and E,(f) is in C(F)™ for
1<i<m.

4. Main results. Let V be an arbitrary element in C(&)". Then
V can be written as follows;

(4'1) V=(V1a V29 M Vm,)
where V, is an element in C()™ (1<j<m). Now we shall define two
subspaces of C(F)". Let C(%F)z denote the closed subspace of C(F)" con-
sisting of elements which satisfy the following relation,
“.2) Vi(s™)'=°Cpp(s; sV, )

) for all se W(w,) A1<j<m) and ve &,

3.1
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where V¢ is the transposed vector of V, A1<j<m) and °Cp(s;s7") is
a unitary operator which maps L(w) onto L(sw) (se€ W) (cf. Harish-
Chandra [6]). We regard this operator as a matrix operator on L(w)
with respect to the basis in (2.2) and denote the complex conjugate
by —.

Let 4((F)z denote the subspace of C(F)% consisting of elements V
whose each component v} (V,=({, v{, - - -, v}), 1<7<m) extends to the
holomorphic function which is an exponential type and satisfies the
following condition ; if there exists a relation,

4.3) 5 CW< ar: ) EQ@:¢i:v:2)=0
ds7at dy™t J v=u;
where m, is a non-negative integer, v, ¢ (<), (the complexification of
%) and C,,,, is in C, then
4.4) > Cosel )
Y dy™

Now we shall decompose C(G, 7). Let I',, [, ---, I, be a complete
set of #-stable Cartan subgroups of G, no two of which are conjugate
and put 4,=("))z (the vector part of I',) for 1<i<r. Let P,=M,A,N,
be a parabolic subgroup whose split component is A, (1<i<7). Let
C.G, ) denote the closed subspace of C(G, 7) consisting of all f satisfy-
ing f¥”~0 unless A’ (P’=M’A’N’) is conjugate to A, underK. Then
C(G, 7) is decomposed as follows (cf. Harish-Chandra [6]);

4.5) C(G, 1)=C(G, )DC(G, )D- - -BC(G, ©)

(topological direct sum). When we apply the above consideration to
P, (1<i<r), we shall use the notation such that ¥,,, F, and »® instead
of E,, and n. When I', is a compact Cartan subgroup, then C,(G, 7)
coincides with °C(G, r) and E,, is the identity mapping.

Theorem 1. If I', is not compact, then the mapping E,, is o
homeomorphism of C(G, t) onto C(F,)L?.

C@G,)=CG, ) DG, DD - - BC(G, 1)
E4 Eg4, Eg4,

CE)BCG )" D - - DCEF)3"

Theorem 2. Assume that the real rank of G is equal to one. Then
the mapping E, is a homeomorphism of C.(G, ) onto C(F)%. An ele-
ment V in C(F)2 belongs to H(F)% if and only if there exists a function
[ in C2(G,7) such that V=E ,f). If rank K+rank G, then °C(G, 1)
=0.

vi()=0.

v=yvg

C(G, 7)="C(G, DDC.(G, )
E4
CE)

Remark 1. In Theorem 1 we have a following inversion formula
for f e C(G,7);
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r m® n}’?w
F@=3 5 Woem 5 [ aP @)
p=1j@® =1 (P =1 gp

XEP,; ¢id i v,; ) f($id, v,)dy,.

Remark 2. In Theorem 2 if we put r,=r,=trivial representation
and V=¢, then Theorem 2 coincides with the result of S. Helgason [7]
and R. Gangolli [3]. In the same way if we put r,=trivial represen-
tation and r,=arbitrary, then Theorem 2 coincides with a theorem of
S. Helgason [8].

Remark 3. In Theorem 2 we can obtain a relation between a size
of a support of a compactly supported function and an exponential
type of its Fourier transform as usual.

Remark 4. Using Theorem 2, we have obtained Paley-Wiener
type theorem on C(G), when real rank of G is one. We shall describe
this result in a next article.
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