82. On the Zero-Free Region of Dirichlet's L-Functions

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1978)

1. Let $L(s, \chi)(s=\sigma+i t)$ be the Dirichlet L-function for a Dirichlet character χ. We denote by $\mathcal{Z}(T)$ the set of all zeros in the region $0<\sigma<1,|t| \leqq T$ of all primitive L-functions of modulus $\leqq T$. Then the fundamental result on the zero-free region for $L(s, \chi)$ is

Theorem. For any $\rho \in \mathscr{Z}(T)$ we have

$$
\begin{equation*}
\operatorname{Re} \rho \leqq 1-c_{0}(\log T)^{-1} \tag{1}
\end{equation*}
$$

save for at most one zero, where c_{0} is an effectively computable positive constant. This (possibly existing) exceptional zero β_{1} is real and simple, and comes from $L\left(s, \chi_{1}\right)$ with a unique real character χ_{1}. Further there exists a function $c(\varepsilon)>0$ such that for any $\varepsilon>0$

$$
\begin{equation*}
\beta_{1} \leqq 1-c(\varepsilon) T^{-\varepsilon} . \tag{2}
\end{equation*}
$$

(1) is the Page-Landau theorem, and (2) is Siegel's theorem in which $c(\varepsilon)$ is not effectively computable. The purpose of the present note is to modify the argument of our preceding note [1] so as to prove this theorem without appealing to the deep function-theoretical properties of $L(s, \chi)$. The details will appear elsewhere.
2. In what follows we assume always that T is sufficiently large.

Lemma 1. Uniformly for $0 \leqq \sigma \leqq 1$ and for $\chi(\bmod q)$ we have

$$
L(s, \chi) \ll(q(|t|+1))^{1-\sigma} \log (q(|t|+2)) .
$$

If χ is principal, the region $|s-1| \leqq 1 / 2$ should be excluded.
Lemma 2. For any $\rho \in \mathcal{Z}(T)$ we have

$$
\operatorname{Re} \rho \leqq 1-T^{-3}
$$

Lemma 1 is not the best among results of this type, but the above assertion can be proved only by the partial summation. Lemma 2 is quite rough, but this is important in our procedure. To prove it let $L(\rho, \chi)=0$. Either if χ is complex or if $|\operatorname{Im}(\rho)| \geqq T^{-2}$, then the argument of [2, pp. 43-44] does work also for $L(s, \chi)$. So in these cases we have $\operatorname{Re} \rho \leqq 1-T^{-3}$. Otherwise let $a(n)=\sum_{d \mid n} \chi(d)$. Then $a(n) \geqq 0$ and $a\left(n^{2}\right)$ $\geqq 1$. So by Lemma 1 , we have

$$
\begin{aligned}
N^{1 / 2} & \ll \sum_{n \leq N} a(n)(\log N / n)^{2} \\
& =2 L(1, \chi) N+O\left(T(\log T)^{2}\right)
\end{aligned}
$$

Hence $L(1, \chi) \gg T^{-1}(\log T)^{-2}$, from which the desired assertion follows easily.

Now let $1-\delta+i \tau \in \mathcal{Z}(T)$ be a zero of $L(s, \psi)$. We may assume $T^{-3} \leqq \delta \leqq 1 / 4$ by the obvious reason. Next let $f(n)$ be the coefficient of the Dirichlet series for $\zeta(s) L(s+\delta+i \tau, \psi)$. And let us apply the Selberg sieve to the sequence $\left\{\left|f(n)^{2}\right|\right\}$. The situation is quite similar to the corresponding part of [1], so hereafter we adopt the notations of [1].

Lemma 3. Let θ_{d} be defined by (1) of [1], and let us put

$$
V(N)=\sum_{n \leqq N}|f(n)|^{2}\left(\sum_{d \mid n} \theta_{d}\right)^{2} .
$$

Then we have, provided $R \geqq T^{B}$ and $N \geqq R^{4}$,

$$
V(N)<_{B} \bar{\delta} N .
$$

To prove this we observe that for $\sigma>1$

$$
\begin{aligned}
& \sum_{n=1}^{\infty}|f(n)|^{2} n^{-s} \\
& \quad=\zeta(s) L\left(s+2 \delta, \psi_{0}\right) L(s+\delta+i \tau, \psi) L(s+\delta-i \tau, \bar{\psi}) L\left(2(s+\delta), \psi_{0}\right)^{-1},
\end{aligned}
$$

where $\psi_{0}=\psi \bar{\psi}$. Lemma 1 and this yield, on the conditions given above,

$$
V(N) \ll_{B} L\left(1+2 \delta, \psi_{0}\right)|L(1+\delta+i \tau, \psi)|^{2} G(R)^{-1} N .
$$

On the other hand the same combination gives, provided $R \geqq T^{B}$,

$$
G(R) \gg_{B} \delta^{-1} L\left(1+2 \delta, \psi_{0}\right)|L(1+\delta+i \tau, \psi)|^{2} .
$$

Thus the assertion of the lemma follows.
3. Now we give a brief proof of the theorem. Let ω_{d} be defined by

$$
\sum_{d \backslash n} \omega_{d}=\left(\sum_{d \mid n} \theta_{d}\right)\left(\sum_{d \backslash n} \lambda_{d}\right),
$$

where θ_{d} and λ_{d} are defined by (1) and Lemma 4 of [2], respectively. And we put

$$
M(s, \chi)=\sum_{d \leq z^{2} R} \omega_{a} \chi(d) d^{-s} \prod_{p \mid d}\left(1+\frac{\psi(p)}{p^{\delta+i \tau}}-\frac{\chi \psi(p)}{p^{s+\dot{\delta}+i \tau}}\right)
$$

Then we have, for $\sigma>1$,

$$
L(s, \chi) L(s+\delta+i \tau, \chi \psi) M(s, \chi)=1+\sum_{z \leq n} \chi(n) f(n)\left(\sum_{d \mid n} \omega_{d}\right) n^{-s} .
$$

Hereafter let χ be non-principal, and let $K(s, \chi)=L(s, \chi) L(s+\delta+i \tau, \chi \psi)$. Then $K(s, \chi)$ is regular for $\sigma>0$. Now let $\rho=\beta+i \gamma$ be a zero of $K(s, \chi)$ such that $|\gamma| \leqq T$ and $1-\beta \leqq 1 / 4$. And we set $z=T^{4 A}, R=T^{A}, X=T^{10 A}$ with a large constant A. Then we get, by Lemma 1 and by a routine reasoning,

$$
1 \ll \sum_{z \leqq n}|f(n)|\left|\sum_{d \mid n} \omega_{d}\right| n^{-\beta} e^{-n / X} .
$$

Hence by Lemma 4 of [1] and by Lemma 2 above we get, just as in [1], (3)

$$
1 \ll \delta T^{20 A(1-\beta)} \log T .
$$

Now either if ψ is complex, or if ψ is real and $\tau \neq 0$, or if ψ is real, $\tau=0$ and $1-\delta$ is a multiple zero, then obviously $K(1-\delta+i \tau, \psi)=0$. Namely in these cases we can set $\rho=1-\delta+i \tau$ in (3), and we find $\delta \gg(\log T)^{-1}$. In the remaining case we may assume that ψ is real, and $1-\delta$ is a simple zero of $L(s, \psi)$. Then we may further assume
that $\delta \leqq c^{\prime}(\log T)^{-1}$ with a certain sufficiently small constant $c^{\prime}>0$. Then (3) implies all other zeros of $\mathcal{L}(T)$ are in the range $\sigma \geqq 1$ $-c^{\prime \prime}(\log T)^{-1}$ with an effective $c^{\prime \prime}>0$. Now only the exceptional zero remains. So in (3) set $\beta_{1}=1-\delta$. Then (3) is the Deuring-Heilbronn phenomenon which, as is well-known, implies Siegel's theorem. This ends the proof of the theorem.

Added in Proof (Dec. 13, 1978). In the mean time the author has realized that the whole argument of [1] and the present note (including Lemma 4 of [1]) can be made independent of the theory of functions. Thus we have now proved elementary the most fundamental results on the zeta- and L-functions. For the details see our forthcoming paper entitled "An elementary proof of Vinogradov's zero-free region for the Riemann zeta-function".

References

[1] Y. Motohashi: On Vinogradov's zero-free region for the Riemann zetafunction. Proc. Japan Acad., 54A, 300-302 (1978).
[2] E. C. Titchmarsh: The Theory of the Riemann Zeta-Function. Oxford Univ. Press (1951).

