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In this note we remark that the method of Grothendieck for the
extension of line bundles (see SGA2 [1] or Hartshorne [2, Chap. IV])
can be applied also for vector bundles after a slight modification.
Details and proofs shall be published elsewhere.

Proposition A. Let A be a non-singular ample divisor on a mani-
fold M. Let E be a vector bundle on A. Suppose that H? (A, End (E)
RNtAl)=0 for any t<0. Then E can be extended to a vector bundle
on the formal completion M of M along A.

Proposition B. Let A, M and M be as above. Let E be a vector
bundle on M and put E =E 4 Suppose that dim A=2 and H?(A,E
®I[tA]1)=0 for any integer t,p with 0<p<dim A. Then E can be
extended to a vector bundle on M.

Main theorem. Let A be a non-singular ample divisor on a
manifold M with dim M =3. Let E be a vector bundle on A such that
HYA, End (BYQ[—tA1)=0 for any t>0 and that H?P(A, EQItA],)=0
for any integer t, p with 0<p<dim A. Then E can be extended to a
vector buudle E on M.

Remark. Intheabove situation, one can prove that HX (M, Ed (E)
®[—tA]D =0 for any t>0 and that H?(M, EQ[tA])=0 for any integer
t, » with 0<p<dim M.

Combining the result of Sato [4], we obtain the following

Theorem. Let E be a vector bundle on a manifold M with dim M
>3 which is a complete intersection in a projective space PY. Then
E is a direct sum of line bundles if and only if the following two con-
ditions are satisfied.

a) HYM,End (EY(—1)=0  for any t>0.

b) H*(M,E(t)=0 for any t,p with 0<p<dim M.

Remark. The above condition a) is indispensable. Indeed, let
M be the grassmannian variety of the lines on P3. Then the Pliicker
embedding makes M a smooth hyperquadric in P°. The tautological
vector bundle E on M satisfies the condition b), but it is not decompos-
able.

Remark. Let A be a hyperplane in M=P"*'. Then any vector
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bundle E on A can be extended to M by a projection map M—{x}—4
from a point x e M—A. Hence the condition a) is not necessary in
order to apply Proposition B. Thus we obtain a new proof of the fol-
lowing

Theorem (Horrocks [3]). Let E be a vector bundle on P*. Then
E is a direct sum of line bundles if and only if H?(P", E(t))=0 for any
t,p with 0<p<n.

This work of Horrocks suggests further development of the study
of the obstruction to extending vector bundles.
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