72. Parallel Vector Fields and the Betti Number

By Yosuke Ogawa and Shun-ichi Tachibana
Department of Mathematics, Ochanomizu University
(Communicated by Kunihiko Kodarra, m. J. A., Nov., 13, 1978)

Introduction. Let M^{n} be an n dimensional connected compact orientable smooth Riemannian manifold. In the previous paper [3] we showed that the Betti numbers of M^{n} with one or two parallel vector fields satisfy some inequalities. In this note we shall generalize these results to the case of M^{n} admitting r parallel vector fields ($1 \leqq r$ $\leqq n$). A trivial example of such M^{n} is the Riemannian product $T^{r} \times M^{n-r}$, where T^{r} is the flat r-torus and M^{n-r} is any Riemannian manifold.

1. Preliminaries. Let \mathscr{H}_{p} be the vector space of harmonic p forms on M^{n}. $\operatorname{dim} \mathcal{H}_{p}$ is equal to the p-th Betti number b_{p}. We make a convention that $\mathcal{A}_{p}=\{0\}$ for $p>n$ or $p<0$ and hence all operators act trivially on such spaces. Throughout the paper we shall denote by p any integer.

Let u be a vector field on M^{n}. By the natural identification with respect to the Riemannian metric, u is identified with a 1-form which will be denoted by u again. $e(u)$ and $i(u)$ denote respectively the operators of exterior and interior product by u. For a p-form ω, we have $e(u) \omega=u \wedge \omega$ and

$$
(i(u) \omega)\left(X_{1}, \cdots, X_{p-1}\right)=\omega\left(u, X_{1}, \cdots, X_{p-1}\right)
$$

where X_{1}, \cdots, X_{p-1} are tangent vectors. These operators satisfy $e(u)^{2}$ $=i(u)^{2}=0 . \quad i(u)$ is an anti-derivation and hence
(1)

$$
i(u) e(u)+e(u) i(u)=I
$$

holds for a unit vector field u, where I is the identity on p-form.
2. Parallel vector fields. Let u be a parallel vector field on M^{n}. First we notice that $\omega \in \mathcal{H}_{p}$ implies $e(u) \omega \in \mathcal{H}_{p+1}$ and $i(u) \omega \in \mathcal{H}_{p-1}$.

Now we assume that M^{n} admits $r(1 \leqq r \leqq n)$ linearly independent parallel vector fields u_{1}, \cdots, u_{r}. Making use of the Schmidt process, we may suppose that u_{1}, \cdots, u_{r} are orthonormal, i.e.,

$$
i\left(u_{k}\right) u_{j}=\delta_{k j} \quad(1 \leqq k, j \leqq r) .
$$

$a_{1}, \cdots, a_{k}\left(1 \leqq a_{1}, \cdots, a_{k} \leqq r\right)$ being integers, let us define

$$
\begin{aligned}
& i_{a_{1} \cdots a_{k}}=i\left(u_{a_{1}}\right) \cdots i\left(u_{a_{k}}\right): \mathcal{H}_{p} \rightarrow \mathcal{H}_{p-k}, \\
& e_{a_{1} \cdots a_{k}}=e\left(u_{a_{1}}\right) \cdots e\left(u_{a_{k}}\right): \mathcal{H}_{p} \rightarrow \mathcal{H}_{p+k} .
\end{aligned}
$$

Lemma. For $1 \leqq s \leqq r$, we have

$$
\begin{equation*}
I=-\sum_{k=1}^{s} \sum_{1 \leqq a_{1}<\cdots<a_{k} \leq s}(-1)^{k(k+1) / 2} e_{a_{1} \ldots a_{k}} i_{a_{1} \ldots a_{k}}+(-1)^{s(s-1) / 2} i_{1 \ldots s} e_{1 \ldots s} \tag{2}
\end{equation*}
$$

Proof. When $s=1$, (2) is nothing but (1). Suppose that (2) is true for $s-1$. Taking account of (1) and $i\left(u_{k}\right) e\left(u_{j}\right)=-e\left(u_{j}\right) i\left(u_{k}\right)$ for $j \neq k$, we have

$$
\begin{aligned}
& i_{1} \ldots s \\
& e_{1 \ldots s}=(-1)^{s-1}\left(i_{1 \ldots(s-1)} e_{1 \ldots(s-1)}\right)\left(i_{s} e_{s}\right) \\
&=(-1)^{(s-1)(s-2) / 2+(s-1)}\left\{I+\sum_{k=1}^{s-1} \sum_{1 \leq a_{1}<\cdots<a_{k}<s}(-1)^{k(k+1)} e_{a_{1} \ldots a_{k}} i_{a_{1} \cdots a_{k}}\right\} \\
& \times\left(I-e_{s} i_{s}\right),
\end{aligned}
$$

from which we know (2) to be valid for s.
3. Theorems. Let u_{1}, \cdots, u_{r} be orthonormal parallel vector fields on M^{n}. Putting $i(u)_{p}=i(u)$ for any integer p, we consider the linear mapping $i(u)_{p}: \mathscr{H}_{p} \rightarrow \mathcal{H}_{p-1}$ and define

$$
\begin{aligned}
& \mathcal{K}_{p}\left(u_{h}\right)=\operatorname{Ker} i\left(u_{h}\right)_{p}, \quad k_{p}\left(u_{h}\right)=\operatorname{dim} \mathcal{K}_{p}\left(u_{h}\right), \quad 1 \leqq h \leqq r, \\
& \mathcal{K}_{p}^{(s)}=\mathcal{K}_{p}\left(u_{1}\right) \cap \cdots \cap \mathcal{K}_{p}\left(u_{s}\right), \quad k_{p}^{(s)}=\operatorname{dim} \mathcal{K}_{p}^{(s)}, \quad 1 \leqq s \leqq r,
\end{aligned}
$$

where $\mathcal{K}_{p}^{(0)}=\mathcal{H}_{p}$ and $k_{p}^{(0)}=b_{p}$ by convention. Then $i\left(u_{s}\right)_{p} \mid \mathcal{K}_{p}^{(s-1)}: \mathcal{K}_{p}^{(s-1)}$ $\rightarrow \mathcal{H}_{p-1}$ has the image in $\mathcal{K}_{p-1}^{(s)}$.

Theorem 3.1. If M^{n} admits r orthonormal parallel vector fields u_{1}, \cdots, u_{r}, then we have

$$
\operatorname{Ker}\left(i\left(u_{s}\right)_{p} \mid \mathcal{K}_{p}^{(s-1)}\right)=\mathcal{K}_{p}^{(s)}, \quad \operatorname{Im}\left(i\left(u_{s}\right)_{p} \mid \mathcal{K}_{p}^{(s-1)}\right)=\mathcal{K}_{p-1}^{(s)},
$$

and hence

$$
\mathcal{K}_{p}^{(s-1)} \cong \mathcal{K}_{p}^{(s)} \oplus \mathcal{K}_{p-1}^{(s)}
$$

are valid for $s=1, \cdots, r$ and any integer p.
Proof. The first assertion is evident. For the second one, we take a p-form $\omega \in \mathcal{K}_{p}^{(s-1)}$, then $i\left(u_{s}\right)_{p} \omega \in \mathcal{K}_{p-1}\left(u_{s}\right) \cap \mathcal{K}_{p-1}^{(s-1)}=\mathcal{K}_{p-1}^{(s)}$. Conversely, let $\omega \in \mathcal{K}_{p-1}^{(s)}$, and we have by virtue of (2)

$$
\begin{aligned}
\omega & =(-1)^{s(s-1) / 2} i_{1 \ldots s} e_{1 \ldots s} \omega \\
& =i\left(u_{s}\right)\left((-1)^{(s-1)(s+1) / 2} i_{1 \ldots(s-1)} e_{1 \ldots s} \omega\right) \in \operatorname{Im}\left(i\left(u_{s}\right)_{p} \mid \mathcal{K}_{p}^{(s-1)}\right) \text {. Q.E.D. }
\end{aligned}
$$

Thus the sequence $\left\{k_{p}^{(s)}\right\},(s=0,1, \cdots, r ; p$ any $)$ of non-negative integers satisfy

$$
\begin{equation*}
k_{p}^{(s-1)}=k_{p}^{(s)}+k_{p-1}^{(s)}, \tag{3}
\end{equation*}
$$

from which it follows that

$$
k_{p}^{(s)}=\sum_{i=0}^{p}(-1)^{i} k_{p-i}^{(s-1)} \geqq 0
$$

Especially we have

$$
\begin{aligned}
& k_{p}^{(1)}=\sum_{i=0}^{p}(-1)^{i} b_{p-i} \geqq 0, \\
& k_{p}^{(2)}=\sum_{i=0}^{p}(-1)^{i} k_{p-i}^{(1)}=\sum_{i=0}^{p}(-1)^{i}(i+1) b_{p-i} \geqq 0 .
\end{aligned}
$$

More generally, by making use of the mathematical induction we can prove

Theorem 3.2. If M^{n} admits r orthonormal parallel vector fields $u_{1}, \cdots, u_{r}(1 \leqq r \leqq n)$, then

$$
k_{p}^{(s)}=\sum_{i=0}^{p}(-1)^{i}\binom{s+i-1}{i} b_{p-i} \geqq 0
$$

are valid for $s=1, \cdots, r$ and any integer p.

Corollary 3.3. $k_{p}^{(s)}$ is independent of the choice of s parallel vector fields taken from u_{1}, \cdots, u_{r}.

Corollary 3.4. $k_{p}^{(s)}=0 \quad$ for $p+s \geqq n+1$.
Especially we have

$$
k_{n+1-s}^{(s)}=\sum_{i=0}^{n+1-s}(-1)^{i}\binom{s+i-1}{i} b_{s+i-1}=0
$$

for $s=1, \cdots, r$.
Corresponding to the duality $b_{n-p}=b_{p}$, the following theorem about $k_{p}^{(s)}$ holds, by making use of (3) and the mathematical induction.

Theorem 3.5. If M^{n} admits r orthonormal parallel vector fields $(1 \leqq r \leqq n)$, then we have

$$
k_{n-p}^{(s)}=k_{p-s}^{(s)}
$$

for $s=0,1, \cdots, r$ and any integer p.

References

[1] S. S. Chern: The geometry of G-structure. Bull. Amer. Math. Soc., 72, 167-219 (1966).
[2] L. Karp: Parallel vector fields and the topology of manifolds. Ibid., 83, 1051-1053 (1976).
[3] Y. Ogawa and S. Tachibana: On Betti numbers of Riemannian manifolds with parallel vector fields (to appear).

