308]Vol. 21,

46. On the Boundary Value of a bounded analytic Function of several complex Variables.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo University.

(Comm. by S. KAKEYA, M.I.A., May 12, 1945.)

1. Let f(z) be regular and bounded in |z| < 1. Then (i) (Fatou.)¹⁾ $\lim f(z) = f(e^{i\theta})$ exists almost everywhere on |z| = 1, when z tends to $e^{i\theta}$ non-tangentially to |z| = 1. (ii) (F. and M. Riesz.)²⁾ If the boundary value $f(e^{i\theta})$ vanishes on a set of positive measure on |z| = 1, then $f(z) \equiv 0$. (iii) (Szegö.)³⁾ If $f(z) \equiv 0$, then $\log |f(e^{i\theta})|$ is integrable on |z| = 1.

We will show that an analogous theorem holds for a bounded regular function of several complex-variables.

Let $z=e^{i\theta}$, $w=e^{i\varphi}$ be points on |z|=1, |w|=1 respectively. Then the pair $(e^{i\theta}, e^{i\varphi})$ can be considered as a point on a torus θ $(0 \le \theta \le 2\pi, 0 \le \varphi \le 2\pi)$ and the measure of a measurable set E on θ is defined by

$$mE = \int_{\mathbf{r}} \int d\theta d\varphi$$
, so that $m\Theta = 4\pi^2$. (1)

Then the following theorem holds:

Theorem 1. Let f(z, w) be regular and bounded in |z| < 1, |w| < 1. Then (i) $\lim_{z \to e^{i\varphi}} f(z, w) = f(e^{i\varphi}, e^{i\varphi})$ exists almost everywhere on Θ , when $z \to e^{i\varphi}$, $w \to e^{i\varphi}$ non-tangentially to |z| = 1, |w| = 1 respectively. (ii) If the boundary value $f(e^{i\varphi}, e^{i\varphi})$ vanishes on a set of positive measure on Θ , then $f(z, w) \equiv 0$. (iii) If $f(z, w) \equiv 0$, then $\log |f(e^{i\varphi}, e^{i\varphi})|$ is integrable on Θ .

Since I have proved (i) in the former paper, I will prove (ii) and (iii). We remark that if f(z, w) is bounded in |z| < 1, |w| < 1 and $|f(e^{i\theta}, e^{i\varphi})| \le M$ almost everywhere on θ , then $|f(z, w)| \le M$ in |z| < 1, |w| < 1.

For, let |z| < R < 1, |w| < R < 1, then $f(z, w) = f(re^{i\theta}, \rho e^{i\varphi})$

$$= \frac{1}{4\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{f(Re^{i\theta'}, Re^{i\varphi'})(R^{2}-r^{2})(R^{2}-\rho^{2})d\theta'd\varphi'}{(R^{2}-2Rr\cos(\theta'-\theta)+r^{2})(R^{2}-2R\rho\cos(\varphi'-\varphi)+\rho^{2})}$$

$$(0 \le r < R, 0 \le \rho < R) \qquad (2)$$

⁽¹⁾ P. Fatou: Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906).

⁽²⁾ F. und M. Riesz: Über die Randwerte einer analytischen Funktion. Compte rendu du quatrième congres des mathematiciens scandinaves (1916).

⁽³⁾ G. Szegő: Über die Randwerte einer analytischen Funktion. Math. Ann. 84 (1921),

⁽⁴⁾ M. Tsuji: On Hopf's ergodic theorem. Jap. Journ. Math. 19.

so that for $R \rightarrow 1$, we have by Lebesgue's theorem,

$$f(z,w) = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} \frac{f(e^{i\theta'},e^{i\varphi'})(1-r^2)(1-\rho^2)d\theta'd\varphi'}{(1-2r\cos(\theta'-\theta)+r^2)(1-2\rho\cos(\varphi'-\varphi)+\rho^2)},$$

hence

$$|f(z,w)| \leq \frac{M}{4\pi^2} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{(1-r^2)(1-\rho^2)d\theta'd\varphi'}{(1-2r\cos(\theta'-\theta)+r^2)(1-2\rho\cos(\varphi'-\varphi)+\rho^2)} = M.$$

Suppose that $|f(z, w)| \leq M$ for |z| < 1, |w| < 1 and $|f(e^{i\theta}, e^{i\varphi})| \leq m (< M)$ on a set E of positive measure on Θ . Then by Egoroff's theorem, there exists a closed sub-set E_0 of E, such that $mE_0 \geq mE - \epsilon > 0$ and $\lim_{r \to 1} f(re^{i\theta}, re^{i\varphi}) = f(e^{i\theta}, e^{i\varphi})$ uniformly on E_0 , so that there exists a suitable R < 1, such that

$$|f(Re^{i\theta}, Re^{i\varphi})| \leq m + \epsilon < M \text{ for } (\theta, \varphi) \in E_0.$$
 (3)

We put

$$F(\theta, \varphi) = \text{Max.}(\log (m + \epsilon), \log |f(Re^{i\theta}, Re^{i\varphi}))|). \tag{4}$$

Then $F(\theta, \rho)$ is continuous and

$$F(\theta, \varphi) \leq \log M \text{ on } \theta - E_0,$$

 $F(\theta, \varphi) = \log (m + \epsilon) \text{ on } E_0.$ (5)

Let for |z| < R, |w| < R, $u(z, w) = u(re^{i\theta}, \rho e^{i\rho})$

$$= rac{1}{4\pi^2} \int\limits_0^{2\pi} \int\limits_0^{2\pi} rac{F(heta', m{arphi}')(R^2-r^2)(R^2-
ho^2)d heta'dm{arphi}'}{(R^2-2R\cos(heta'- heta)+r^2)(R^2-2R
ho\cos(m{arphi}'-m{arphi})+
ho^2)} \,.$$

We have

$$u(Re^{i\theta}, Re^{i\varphi}) = F(\theta, \varphi) \ge \log |f(Re^{i\theta}, Re^{i\varphi})|, \qquad (6)$$

$$u(0, 0) = \frac{1}{4\pi^{2}} \int_{\Theta} \int F(\theta, \varphi) d\theta d\varphi = \frac{1}{4\pi^{2}} \int_{E_{0}} \int F(\theta, \varphi) d\theta d\varphi$$

$$+ \frac{1}{4\pi^{2}} \int_{\Theta-E_{0}} \int F(\theta, \varphi) d\theta d\varphi \le \log (m + \epsilon) \cdot \frac{mE_{0}}{4\pi^{2}}$$

$$+ \log M \cdot \left(1 - \frac{mE_{0}}{4\pi^{2}}\right). \qquad (7)$$

Let

$$\Phi(z, w) = \log |f(z, w)| - u(z, w), (|z| \le R, |w| \le R),$$
 (8)

$$\mu = \underset{|z| \le R}{\text{upper limit }} \Phi(z, w). \tag{9}$$

Since u(z, w) is bounded and $\log |f(z, w)| \leq \log M$, we have $\mu < \infty$.

We will prove that $\mu \leq 0$.

Let (z_n, w_n) be points in $|z| \leq R$, $|w| \leq R$, such that $z_n \rightarrow z_0$, $w_n \rightarrow w_0$ and

310 M. Tsuji. [Vol. 21,

(ii) Next suppose that $|z_0| < R$, $|w_0| = R$. We write u(z, w) in the form:

$$u(z, w) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{U(\theta', w)(R^{2} - r^{2})d\theta'}{R^{2} - 2Rr\cos(\theta' - \theta) + r^{2}},$$

where

$$U(\theta,w) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{F(\theta,\varphi')(R^2-\rho^2)d\varphi'}{R^2-2R\rho\cos(\varphi'-\varphi)+\rho^2}.$$

Since $U(\theta, w) \rightarrow F(\theta, \varphi_0)$ for $w \rightarrow w_0 = Re^{i\varphi_0}$,

$$u(z, w_0) = \frac{1}{2\pi} \int_0^{2\pi} \frac{F(\theta', \varphi_0)(R^2 - r^2)d\theta'}{R^2 - 2Rr\cos(\theta - \theta) + r^2}.$$

Hence $u(z, w_0)$ is a harmonic function of z in |z| < R. Since $f(z_0, w_0) \neq 0$, $f(z,w_0) \neq 0$ in $|z-z_0| \leq \delta$, where δ is taken so small that $|z-z_0| \leq \delta$ is contained in |z| < R. Since $\Phi(z, w_0)$ is harmonic in $|z-z_0| \leq \delta$, if $\Phi(z, w_0) \equiv \text{const.}$, then $\Phi(z, w_0)$ takes values in $|z-z_0| \leq \delta$, which are greater than $\Phi(z_0, w_0) = \mu$, which contradicts the definition of μ . Hence $\Phi(z, w_0) \equiv \text{const.} = \mu$. Since $\Phi(Re^{i\theta}, R^{i\phi}) \leq 0$, we have $\mu \leq 0$.

(iii) We have $\mu \leq 0$, if $|z_0| = R$, $|w_0| = R$ from (6), (8).

Hence $\mu \leq 0$ in any case, so that

$$\log |f(z, w)| \le u(z, w)$$
 in $|z| \le R$, $|w| \le R$,

hence by (7),

$$\log |f(0,0)| \leq u(0,0) \leq \log(m+\epsilon) \frac{mE_0}{4\pi^2} + \log M \left(1 - \frac{mE_0}{4\pi^2}\right). (10)$$

Making $\epsilon \rightarrow 0$, we have

$$\log|f(0,0)| \leq \log m \cdot \frac{mE}{4\pi^2} + \log M \cdot \left(1 - \frac{mE}{4\pi^2}\right),$$

 \mathbf{or}

$$|f(0,0)| \le m^{\frac{mE}{4\pi^2}} M^{1-\frac{mE}{4\pi^2}}.$$
 (11)

Hence if $f(e^{i\theta}, e^{i\phi}) = 0$ on a set E of positive measure on θ , then f(0, 0) = 0. From this we conclude that $f(z, w) \equiv 0$. For, if $f(z, w) \not\equiv 0$, let $f(z_0, w_0) \not\equiv 0$

$$(|z_0|<1, |w_0|<1)$$
. Put $F(z,w)=f(\frac{z+z_0}{1+\bar{z}_0z}, \frac{w+w_0}{1+\bar{w}_0w})$. Then $F(z,w)$

is regular and bounded in |z| < 1, |w| < 1 and its boundary value vanishes on a set of positive measure on θ , so that $F(0, 0) = f(z_0, w_0) = 0$, which contradicts the hypothesis. Hence $f(z, w) \equiv 0$, q.e.d.

3. Proof of (iii).

Let $f(z, w) \not\equiv 0$, then after a suitable linear transformation, we may assume that $f(0, 0) \not\equiv 0$ and |f(z, w)| < 1 in |z| < 1, |w| < 1.

Let $|f(e^{i\theta}, e^{i\phi})| \ge 2\epsilon > 0$ on a set E. Then by Egoroff's theorem, there exists a closed sub-set E_0 of E, such that $mE_0 \ge mE - \epsilon > 0$ and $\lim_{r \to 1} f(re^{i\theta}, re^{i\phi}) = f(e^{i\theta}, e^{i\phi})$ uniformly on E_0 , so that for a suitable R < 1,

$$|f(Re^{i\theta}, Re^{i\varphi})| \ge \epsilon \quad \text{for} \quad (\theta, \varphi) \in E_0.$$
 (12)

Let

$$F(\theta, \varphi) = \text{Max.}(\log \epsilon, \log |f(Re^{i\theta}, Re^{i\varphi})|) \quad (0 < \epsilon < 1), \quad (13)$$

then $F(\theta, \varphi)$ is continuous and since $|f(z, w)| < 1, 0 < \varepsilon < 1$,

$$F(\theta, \varphi) \leq 0$$
 on $\theta - E_0$, $F(\theta, \varphi) = \log |f(Re^{i\theta}, Re^{i\varphi})|$ on E_0 . (14)

Let

$$u(z, w) = u(re^{i\theta}, \rho e^{i\theta}) =$$

$$\frac{1}{4\pi^2} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{F(\theta', \varphi')(R^2 - r^2)(R^2 - \rho^2)d\theta'd\varphi'}{(R^2 - 2Rr\cos(\theta' - \theta) + r^2)(R^2 - 2R\rho\cos(\varphi' - \varphi) + \rho^2)} \cdot (0 \le r < r < 1, 0 \le \rho < R < 1)$$

Then by (10), (14),

$$\log|f(0,0)| \leq u(0,0) = \frac{1}{4\pi^2} \int_{\Theta-E_0} F(\theta,\varphi) d\theta d\varphi + \frac{1}{4\pi^2} \int_{E_0} \int F(\theta,\varphi) d\theta d\varphi \leq$$

$$\frac{1}{4\pi^2} \int_{\mathbb{R}_+} \int \log |f(Re^{i\theta}, Re^{i\varphi})| d\theta d\varphi.$$

Since for $R \rightarrow 1$, $\log |f(Re^{i\theta}, Re^{i\varphi})| \rightarrow \log |f(e^{i\theta}, e^{i\varphi})|$ uniformly on E_0 ,

$$\log |f(0,0)| \leq \frac{1}{4\pi^2} \int_{\mathbb{F}_a} \int \log |f(e^{i\theta},e^{i\varphi})| d\theta d\varphi,$$

By (ii), $mE \rightarrow 4\pi^2$ for $\epsilon \rightarrow 0$, so that making $\epsilon \rightarrow 0$, we have

$$\log|f(0,0)| \leq \frac{1}{4\pi^2} \int_{\Theta} \int \log|f(e^{i\theta},e^{i\varphi})| d\theta d\varphi. \tag{15}$$

Hence $\log |f(e^{i\theta}, e^{i\varphi})|$ is integrable on θ , q.e.d.

Similarly we can prove:

Theorem 2. Let $f(z_1, ..., z_n)$ be regular and bounded in $|z_1| < 1, ..., |z_n| < 1$. Then (i) $\lim_{n \to \infty} f(z_1, ..., z_n) = f(e^{i\theta_1}, ..., e^{i\theta_n})$ exists almost everywhere on an n-dimensional torus $\theta(0 \le \theta_k \le 2\pi, k = 1, 2, ..., n)$, when $z_k \to e^{i\theta_k}$ non-

312 M. TSUJI. [Vol. 21,

tangentially to $|z_k| = 1$ respectively. (ii) If the boundary value $f(e^{i\theta_1}, \ldots, e^{i\theta_n})$ ranishes on a set of positive measure on θ , then $f(z_1, \ldots, z_n) \equiv 0$. (iii) If $f(z_1, \ldots, z_n) \equiv 0$, then $\log |f(e^{i\theta_1}, \ldots, e^{i\theta_n})|$ is integrable on θ .