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0. Introduction. One of the present authors had studied the
conformal transformations

(0.) , =g
of Riemannian metrics which change any Riemannian geodesic circle

xx dx’ &x x(0.2) ds. +g,,
ds ds---- 0

into a Riemannian geodesic circle, and called such transformations
concircular transformations. )

In order that the conformal transformation (0. 1) be a concir-
cular one, it is necessary and sufficient that the function p satisfies
the differential equations

(0.3) p,------p,;,--O,O,+ g OOrg,,=g,,,

where P (loft p); and the semi-co }n denotes the covariant diffe-
rentiation with respect to the Chrisoffel symbols {}, beinff a
certain scalar.

If we put

(0.4) ,=,
the condition (0. a) may also be written as

(0.5) a; a..;
where =; and a is a certain scalar.

If the partial differential equations (0.3) or (0.5) admit a solu-
tion, the family of hypersurfaces dened by =constant or r=cons-
tam are totally umbilical and their orthogonal trajectories are
geodesic Ricci curves.

Conversely, if a Riemannian space contains a family of = total-
ly umbilical hypersurfaces whose orthogonal trajectories are geo-
desic Ricci curves, the space admits a concircular transformation.

In the present note, we shall study the spaces which admit the
concircuiar transformation and satisfy some additional conditions.

1. We shall first consider a Riemanni space which admits a

() K. Yano" Concircular Geometry, I, lI, III, IV, V. Proc. 16(1940), 195-200;

354-360 442-445 505-511 18 (1942), 446-451.
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concircular transformation and which is conformally fiat.
As our space admits a concircular transformation, there must

exist a function which satisfies
(1.1) ; ag,,,

where =a;,, and a is a certain function of coordinates. Thus,
differentiating the quantity gaa covariantly and taking account
of (1.1), we find

from which we can conclude that the quantities ga and a are
both functions of o alone. Thus we can put

(1.2) go6=o(o), a=a().
Next, substituting (1.1) into the Ricci identities

we find
(1.3) -a,R"’=a’

Multiplying this equation by g* and summing up with respect
to the indices z and , we find

(1.4) --R ,.,’--(n-1) a’o,

which shows that the direction
being the mixed components of the Ricci tensor R(=R.).

’Now, the space being supposed to be conformally flat, we have

Substituting this into (1.a) and taking account f (1.4), we find

-n-2
R

R, Rg, a’g,, "] Rg., a g,., "]an-e
From this equation, we can conclude that

n-2R(1.5) - (n--1) "
where is a certain scalar.

Multiplying this equation by g and summing up for the in-
dices and u, we obtain

R(.6) (n-) (n-2)

On the other hand, we have, from (1.5),
R R a’
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Differentiating this covariantly with respect to :0, contracting
with respect to , and taking account of 1 .I and of the identities

1R. ; =R;
we find

or

R; R; a"o =p;oa + (n+1)2(n--2) t- (n-l) (n-2) +n-2

(O;aa’+ (n+l)2(n-1) (n--2) a4’--n--Z
Thus, we n see that, when n> 3, R is also a function of

a alone. Thus the equation (1.2) and (1.6) show that is also a
function of a alone. Thus we put

R=R(a)
Consquently, the equation (1.5) gives

(1 8) H R Rg-+ 2(n--) (n--Z) =Y()g+()’

The space which is conformally fiat and whose tensor Hs h
the form (1.8) being a subprojective one, we have the

Theorem 1.1. The n( > 3)-dimenonal Riemannian ace which
admits a conrtar traformation and is cformally flat is a b-
rojective ace of Kagan.
Conversely, for a subprojective space, we have

s:. a =0,(19) C H

(1.10) CsHs; Hs; =0,

and (1. 8). Substituting (1.8) into (1. 10), we find

f(g-g)+(;-s;) =0.

Multiplying this equation by gs and contracting with resct
to u and u, we have

(n- 1)f+2- ); =0,

which shows that gOVv is a function of alone, that is to say,
fl.) =().

Next, multiplying (1.8) by g and conh’actg, we find

R
-2(n-) =n(o) +()g,

from which we can see that R is a function of alone, that is,

(1.12) R R (a)
Now, from (1.9), we have

from which, we have, taking account of (1.8),
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or

The equation (I.13) daows that the differential equations

are integrable. Thus the space admits a concircular translormation
and consequently we have the

Theorem 1.2. Subprojective @ace of Kagan admits a concircular
transformation.

2. If a Riemannian space admits a concireular transforma-
tion there exists a function such that

(2.1) a;=ag,,
and we know that the hypersurfaces defined by a=const, are all
totally umbilical and their orthogonal trajectories are geodesic Ricei
CUl"VeS.

We shall represent one of these hypersurfaces by parametric
equations

(2.2) x=x(ui) (i, j, k,... =1,2,-..n--1),
then we have

(2.3) aaBi x=0,

where

(2.4) Bi" - Ox

that is, the vector is normal to the hypersurface. Thus denoting
by B the unit vector normal to the hypersurface, we have

Denoting the first and the second fundamental tensors of the
hypersurface by g and H respectively and the curvature tensor
by R, the equations of Gauss for the hypersurface may be writ-
ten as

(2.5)

where

Jk

But, the hypersurface being totally umbilical, we have

Thus the equations 2.5) become

(2.6)

In these equations, contracting with respect to i and l and
taking account of the relation

B

we find
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R..I. ., Bv( B,B")R + (,--2)g.
Sutitutg (1.3) etions, we find

(2.7)

How, weum tt, the space admittg a ncircul trs-
formation, the tensor H of the s the form

Th we ve
R

Sutitutg th dquation into (2.7), we find

2(n--1)
Thus we have the
Theorem 2.1. If a Riennian ace aits a crmlar trans-

forgon, that is,thee ists afuncff mch tt o;=ag, a the
tor of the ace s the form (2.8), the totally u’lil hy-
perffaces fined by a=ct, are Einstdn aces.

nversely, the space admittg a conckcular trsfortion,
tt h, e existg a function such that ;,=ag, ff we
aume t the totally umbilil hrsurfaces o=const. e
Einstein spaces, tt is,

we have, rom (2.7),

Multiplyg thh equation by BiaB, d ting aunt of

and of

we find

or

BR,}=pB,

which shows that

B and being proportional. But, /P, a’, 7 and p being functions
of a, we Can write

H/()+().
Thus we have the
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Theorem 2.2. If a sltace admits a concirculr transformation,
that is, there exists a function suck tkat ;=ag and if the totally
umbilical hypecsurface =const. are all Einstein aces, then tke
tensor 1I of the sace has tke form (2.8). (n: 3).

ff a Riemannian space which admits a coneireular transfor-
mation is conormally flat, then the tensor / o the space is ne-
cessarily o the orm (2.8), and consequently the totally umbilica!
hypersuraees o=eonst, are all Einstein spaces. Eut totally umbilical
hypersuffaces in a conormally flat space being also conormally
flat/" these hypersuraces are also conormally flat. These hyper-
surfaces being Einstein spaces anti conformally flat svaees at the
same time, they are spaces o constant curvature. Thus we have the

Theorem 2.3. If a Riemannian ace admits a condrcuar trans-
formation and is conformally flat, the hypersurfaces defined by
const, are all aces of constant curvature. n>3

3. In this Paragraph, we shall reconsider the ease in which
the space admits a concircular transformation, that is, there exists
a function such that

(3.1) a; ag

and the tensor/ir of the space has the form

(3.2)

We know that a and gs0 are both functions of alone. Contrac-
ting (3.2) by g, we find

R _nf()+O(a)gaa.-2(n-D

Differentiating this equation covariantly, and taking account o (3.1),
we have

(3.3)
R;

--2 nf"a+b’agWaa.+2,.],aa,

On the other hand, from 3.2), we have
rt. =B+o.

Differentiating this equation covariantly, and taking account of

t’; (n-1),
we find

(3.4) 2 (n-l)
Comparing the equations (3.3) and (3.4), we find

(3.5) f =Ca.
Thus we have

(1) K. Yano Sur les 6quations de Gauss dans la g6om&rie conforme des espaces

de Riemann, Proc. 15 (1939), 247-252.
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’-)
d consequently we ve e

Theorem 3. I.

ace has
(S.e) ,-.=0.

We l now suptesce admi a conrl trs-
formati d its tenor Ev tisfi e tion (3.6.

From equati (1.4), we ve
Bj,=0.

Differentiating is vitly along e hrsurface d ta-
king acct of

we find
gHBR--HBBv+BB*;,=0.

Sutituting (2.7 ] in is uation, we ve

or, according to

e ther and,
(a.8) =x+at,

we have
3.9) Xg=e;+e; g,()

d consequtly e deortion defined by 3.8 is a conorl
one. Substituting 3.9) h the equation

3.0)

we find

(3.)

Substituting (3.11 into the equation

we find

(I) See, K. Irano Groups of transformations in generalized spaces. Akademia Press,

Tokyo, 1949.
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from which, by contraction,

The XR being given by
XR,,. R;+;R+;R

R;+2aR,
we have, from (3.14),

(3.15)

e being prortional to B’, we have

o

Thus substituting (3.16) into (3.7), we find

(3.19) --HR rg (a-O)

because of the relation

195

/ =-H’.

Thus we have the
Theorem 3.2. If a space admitting a concircular transformation

has the tensor r1 such that r;-n,;=0, the totally umbilical hy-
persurfaces which the space contains are all Einstein spaces.

Theorem 3.3. If a space admitting a concircular transformation
has the tensor t such that r,;-H;=0, the tensor has theform

(1) For the hypersurface a=const., we have

a,B’"0

a;B) Bk+aH)
ag.e,+Bg O,

and consequently,


