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1. Evans’s Theorem on Abstract Riemann Surfaces
with Null-Boundaries. I

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University
(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1956)

G. C. Evans® proved the following

Evans’s theorem. Let F be a closed set of capacity zero in the
3-dimenstonal euclidean space (or z-plane). Then there exists a positive
unit-mass-distribution on F such that the potential engendered by this
distribution has limit o« at every point of F.

Let R* be a null-boundary Riemann surface and let {R,} (=0,
1,2,-..) be its exhaustion with compact relative boundaries {oR,}.
Put R=R*—R, After R. S. Martin,” we introduce ideal boundary
points as follows. Let {p,} be a sequence of points of B tending to
the ideal boundary of R and let {G(z, )} be Green’s function of R
with pole at p,. Let {G(z, »,)} be a subsequence of {G(z, p,)} which
converges to a function G(z, p) uniformly in R. We say that {p;}
determines a Martin’s point p and we make G(z, p) correspond to p.
Furthermore Martin defined the distance between two points p, and
p, of R or of the boundary by

_ G(z, p,) _ G(z, Dy
Mu PI= _SIB | G, ) 14GG |
It is clear that Martin’s point » coincides with an ordinary point
when p € R and that if pi—&p,” G(z, p,) > G(z, p) uniformly in B. In
the following, we denote by R * the sum of R and the set B of all

ideal boundary points of Martin. Let » be a point of E and let VD)
be the domain of R such that ¢[G(z, p)=m]. Then

Lemma 1. f —-ag(—zi—@f—ds:Zvr: 5 m = 0.

W)
n
Proof. Let p:liﬁm D: peB, p,eR. Then D [G(,p)]=2mm
R~V
and

1) G. C. Evans: Potential and positively infinite singularities of harmonic func-
tions, Monatschefte Math. U. Phys., 43 (1936).

2) R. S. Martin: Minimal positive harmonic functions, Trans. Amer. Math. Soc.,
49 (1941).

3) In this paper m means ¢with respect to Martin’s metric *’.

4) The topology induced by this metric restricted in R is homeomorphic to the
original topology and it is clear that B and R are closed and compact.

5) In this article, we denote by 9A the relative boundary of A.
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B=Vm(®

D 16G& p)lslim D )[G(z, D) ]=2mm.
% =V m(Dp;
Let ,(2) be a harmonie function in R— R, such that «,(2)=0 on 2R,
wn(®)=M, on OR, and f 99 §s—2m. Then since R is a null-boundary

aRo
Riemann surface, lim M,=c. Put z,=e"n*®n=p, ¢, where h,(?) is
n

the conjugate of w,(2). Denote the curve on which |z,|=r by 6,

and the part of 67, contained in R—V,(p) by 6;. Then f dao,, < 2m.

—p
O,

Put L= [ ‘@Q_a(,z:?pl 78, Then
) | or,
L2(rn)_§277' rnf *a’c%@,’%'p’)* 27'7: dem

Rn—Vm(p)[G(z, p)l= f f {(5};) (%g—) }7',, dr, d6,. Hence

eMpy My,
f Lry) dr, < f dD dn,<2'n-m, for every n. Therefore
4 2mr,

there exists a sequence L(rn) 1=1t(n) such that L(r;)—0, when
n>co. [2G@DP) 4o faG(z, P) gs+ f G(z, D) gs, 8G(z, P) >

0 W m(»)

on 9V,(p); where V,.(p) 1s the part of V,(p) out of 6;,. Hence we
have the lemma. When p» ¢ R, our assertion is obvious.

Lemma 2. Leét v,(p) be an m-neighbourhood such that v,(p)= 5[8(2, D)

z€R
1

<%]. Then for every V.,(p), there exists a neighbourhood v,(p) such
that

un(D) V(D).
Proof. Assume that the lemma is false, there exists a sequence
{g;} such that lim g,=¢*: ¢.¢ Vy(p) and &¢*, p)=0. Let {G(z,q.)} be

the corresponding functions to {¢,}. Take an ordinary neighbourhood
B(p)® of p with a compaet relative boundary such that
G, p). ds=m: [=Tm.
oV (pdNCB(D on

Since ¢,¢ V,(p) and by the manner in Lemma 1 and by Green’s
formula, we have

m_.z_G(qt,p):él; f Gz, @) -2 aG(z’ D). s,
Lg16]

6) ®(p) is such that B(p)> R and B(p)N\ Rny=0 for a certain n,, we can choose as
8(p) one of component of R— Ry, containing p.
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Therefore Gz, q,) aG(z p). =m,

AV INCB(P)
accordingly there exist points {r;} on 8V,(p)ﬂC¥§(p) such that G(r,
q) <2m, whence G(r,q*)<2m: (r is one of limiting points of 7,)
(€ 2V, NCV). Since G(r, p)=I, this fact means that 8(¢*, p)>8 (§>0).
Hence we have the lemma.

In the following, if G(z, p) has a limit when z—>q( ¢ B), we define
the value of G(z, p) at ¢ by the above limit denoted by G(q, ).
Lemma 3. If at least one of p and q ts contained in R,
G(p, 9)=G(q, ).
Assume B>p (p=limp;: p,e R) and g R. Let B(p) be an ordinary

neighbourhood of » with a compact relative boundary such that
B(p) DV ,(p) and B(p)$q. Then we have by Green’s formula

f Gz, 1) ’aG(z, D gs— fG(z Q) 8G(z’ P0) g G(ps, Q).
320(10) V(D
Since p,—»p, Gz, p;)~>G(z, p) and QG(@%; -p?lds» K Géi’ p) ds uniformly

m
on 9%B(p), each term of the left hand has its limit when p,—p, hence
G(p,, @) has a limit G(p, q). On the other hand G(p,;, ¢)=G(q, ».) and

G(g, p)=1im G(g, p), hence G(z,q) is m-continuous in & and G(p, 9)
=G(g, ). G(p, q) can be defined by another way as follows.

In the sequel, we suppose that both p and ¢ lie on B and consider
G2, @) in the neighbourhood of p. Let Vm(p)zg[G(z, p)=m], Vi)
=¢[G(z,¢)=n] and put

G*(z, q)=min [M,G(,¢)]. Then D[G"(z, )] <2mM.
Let GV.,.(2, @) be the lower envelope of non negative continuous

superharmonic functions in R—R, which are larger than G"(z, Q) in
R—R,—V,(p). Then G¥ (2, q) is harmonic in V,(p), continuous on
OVa(®) NER and by Dirichlet principle D,,[GV.(z, ¢)] <DVm[GM(z, )]
<27M.

Hence we can prove, by the same manner used in Lemma 1, that
there exists a sequence of compact curves {C,} enclosing B such

that {C,} tends to B when ¢— and lim 8G(z, p) l ds=0
T N =V
and we can prove that
G O P a= [ G0 2@ e, (1)
W m(» (0>

where m’'>m, i.e. Vm(p)D V(D).
Now let Gy,(2, ¢) be the lower envelope of non negative continuous
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superharmonic functions in R— R, which are larger than G(z,q) in
R—Ry—V,.(p). Since G,z q) 1 Gru(@ @) on V,(p) and the function
GR)[ =Gz, ), if 2¢ V,(p), =G1,.(2, @) on V,(p)] is one of superharmonic
functions which are larger than G(z,q) in R—R,—V,(p), hence
Gy, (2, q)=}{irg Gv.(2,q). Thus, let M—>c. Then by (1)

6, 0 08P ds= [ 61,2, 0 2CE D) g
m®> " BV () "
=f Grn(?, @) a'Géz’ p) ds. (2)
W (D (L

Put G, ¢9)— Gy,.(?, )= H(z). Then H(?) is positive and vanishes almost
everywhere on oV, (p) (With respect to the measure of 3Géz, D) ds>
n

Let Hy,,(2) be the lower envelope non negative continuous super-
harmonic functions in V,(p) which are larger than H(z) in V,.(p)
~VuD): m">m. Then
Gy, (2, )=Gy, (2, Q)+ Hy,,(2). Hence by (2)
Gr,, (8 Q) = Gv, (D, O,

where G0, )= - f Gz, q) 2¢@ P) g,
71uanm(P) on
We define the value of G(2,q) at p, denoted by G(p,q), by
},‘i:g GVm(p ) q)’

When q € R, this G(p, q) is the same that is defined before.
We shall prove the following
Theorem 1. 1) G(p, p)=-co.
2) Gz, p) is m-lower semicontinuous in R.
3) G(z, p) ts superharmonic in weak sense.”
4) G, =G, p).
1) is clear by Lemma 2 and 3) is also clear by definition of G(q, p).

m ~
Proof of 2). Let p,~>p. Put G.(p,q)= 1 f G"(z,q) ,aGg;p), ds,
V(D
then there exists n, for every positive number ¢, such that

roaost [ G FOP) e
on
OV m(mN Ry
Since the genus of R,,,— R, is finite, map R,.,—R, onto a compact
surface on the w-plane. (R,—R,)(10V,(p) is composed of at most a
finite number of analytic curves. We make sufficiently narrow strip
B in R,,,— R, such that B contains oV,(p)(1 R, and OB passes end
points of 9V,.(p) R, orthogonaly. We divide B into a finite number

7 If U(p)g»zl;t—jU(z)—aG;j; 2 ds for only the niveau curve C of the Green’s
c

function with pole at p, we say that U(z) is superharmonic in weak sense.
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of narrow strips B, (I=1,2,---, k) so that OB, intersect oV, (p) with
angles (=0, =) and we map B, onto a rectangle: 0 <Im{<8(8 is
sufficiently small), —1 << Re{ <1, on the {-plane such that any vertical
straight line: Re{=s: —1<s=1 intersects only once 9V, (p,): J > Jo.
This is possible, since G(2, p;)—>G(2, p), and their derivatives converge.
We make a point «; of 9V, (p,) correspond to a point a of 9V,.(p),

where Re a;=Re . Since S_G(a;; ) ds=0 and uniformly bounded

in B, and since _G%,;@p,) ds— ?ngp)‘ ds and since G(a;, 9)~>G(a, @),
we have

lim [ G™(a; Q) aG(“” P2 ds— f G*(a, @) aGf(?i’fp ) ds,

= BNV B0V 2

whence lim f G"(z,q) SG(z 2 p]) ds= f G"(z, q) aG(z, ). ds, and
I=ee BNOVmCD) BOOV (P

lim G0 O)=lim [ @, 0) aG(z’??i)—ds>11m n [ G, q) %0 aG(z’ 2D s

LLgne WVmlpPNB

= f G"(z, )- 8G(z, P) ds—e. Let ¢~>0. Then

Vmlp)

lljf!l_ vacpﬁ(p;, (I) = GVn(Ps5 9). Hence

GV.(p, @) is m-lower semicontinuous.
If p;e B, we consider p; ¢ B such that lim D;,=D;.

Since GV,(», 9) t G+, (», @) and since va(p, )G, ), Gk, Q) is
also m-lower semicontinuous at p, whence G(z,q) is lower semi-

continuous in R (not only in R where G(z, q) is continuous).

Proof of 4). Let ¢ and » be points of R lying on 2V,(p) and
oV.(@) respectively. If 5 is outside of Vm(p),

If n € Vm(p)7
1 BG@, D) g5y < Glyy )=
R
where C=20V,(p).
Since Gruo®, 0= | [ 6 ) % Pds, and since Vi) > B,
(o4

when n—>c, for any given positive number ¢, there exists a niveau
curve C'=V,(q) such that

1 aG(&, p)
G —e << - G(& A B ds
Vm<p)(p> Q) € 92 f ( ’ (I) on ’

where C is the part of C out of I}n(Q)- Let ¢ be a point on C(R.
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Then p ¢ V,(q), whence
G, )=G(g, &)=- 1« f G(n, &) Qq@l’i& ds. Accordingly we have

Gy per D ) —¢ < <fG( £) -2 aG(’la q) ds ) aG(E, D) ds

- 4}r ] [ ( f GG, q)?ﬁg;ﬂds)@qg—;ﬂlds.

If »¢ VD)
or [ GO0 S t= ] [66m 25D as266, =60,

If n € V()
f G, )8G(E P gs< 1 f GG, ») ?GS; D) ds = G(p, 7)=G(y, D).

On the other hand Gy,Xq, P)=- 1 f G(z, p) 9G(, 9 g5, Hence
2'77' an
Gy (D, q)—e< A ( f G(E, )30(5 ?) g >aG(n, 9 g

= :,l'a aG(ﬂ: (I) —
- o2 jc:G(’ﬂ’ p) n ds GV,,,(q>(q, p).

Since the inverse inequality holds for the other V,.(p) and V,.(q)
and since Gy,,,»(p, @) + G, @) and Gy,,»(q, ) 1 G(q, p), We have 4).



