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21. Some Trigonometrical Series. XIX

By Shin-ichi IzumI
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Feb. 13, 1956)

1. In the preceding paper [1], we have proved the following
Theorem 1. If p=2>1, ¢e>0 and
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then the series
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converges almost everywhere, where s,(x) denotes the nth partial sum
of the Fourier series of f(x).

We shall here consider the case A=1 and in fact prove the
following

Theorem 2.2 If f(x) is differentiable almost everywhere and
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where p>1 and B>1, then the series
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converges almost everywhere.
More generally, the condition (1) may be replaced by
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where -
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The method of proof is0 similar to that of [1].

2. For the proof of Theorem 2 we need a lemma due to
A. Zygmund [2]:
Lemma. Suppose that p>1 and
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where || ||, denotes the LP-norm and suppose that
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1) In [1], it is written that p=1=1, but the case 1=1 is trivial. The assump-
tion that ¢ f(t) is of the power series type’’, and its foot-note are superfluous.

2) G. Sunouchi and T. Tsuchikura remarked the author that the case p=2is
equivalent to a theorem of Tsuchikura [4].
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Let us now prove the theorem. It is sufficient to prove that
the integrated series of (2)
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is convergent. For the sake of simplicity, let
(4) f@) ~ 3 6™,
then
F@) ~ S ive,e,
V=1

By the condition (1)
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and by the M. Riesz theorem
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If we take t=m=/2""%, then we get, by the lemma,
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The estimation holds even if the lower limit of the left side sum-
mation is replaced by m such that 2"<m<2""!, and its upper limit
by oo.

Thus (8) is less than
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which is the required.

3. Let f%¢) denote the «th derivative of f(¢) (ef. [8]). If
f(@) is given by (4) and f*(¢) is integrable, then

fHe)= i v e,e™.
v=1

Then we can prove the following
Theorem 3. If 0<a<l and
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where p>1 and B>1, then the series (2) converges almost every-
where.
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