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1. On Zeta-Functions and L-Series of Algebraic Varieties

By Makoto IsSHIDA
Mathematical Institute, University of Tokyo
(Comm. by Z. SUETUNA, M.J.A., Jan. 13, 1958)

In this paper, we shall prove Weil’s conjecture on zeta-functions
for algebraic varieties, defined over finite fields, having abelian varieties
as abelian (not necessarily unramified) coverings and also Lang’s analo-
gous conjecture on L-series for those coverings. Then we shall see some
interesting relation between the zeta-functions of such algebraic varie-
ties and those of their Albanese varieties. Moreover those results
will enable us to prove Hasse’s conjecture on zeta-functions for some
algebraic varieties defined over algebraic number fields. In the follow-
ing we shall use the definitions, notations and results of Weil’'s book
[6] often without references.

Here I wish to express my hearty gratitude to Prof. Z. Suetuna
for his encouragement and also to Mr. Y. Taniyama for his kind sug-
gestions,

1. Let V be a normal projective variety of dimension 7, defined
over a finite field & with ¢ elements; let A be an abelian variety such
that f: A—V is a Galois (not necessarily unramified) covering, also
defined over k, with group G and of degree » (cf. Lang [2]). The
map a—>a? for all points @ on A determines an endomorphism of A,
which is denoted by m=m,. Let « be a generic point of A4 over k.
Then, for ¢ in G, the map xz—>x° induces a birational transformation
of A defined over k; hence we can write x°=q,(x)+a, where 7, is an
automorphism of A defined over k£ and a, is a rational point on A
over k.

Now we consider an endomorphism #™—g, of A for a positive
rational integer m and for ¢ in G. As k (9.(x))=Fk(x), we have k(x™",
(™ —ns)(x))=k(x) and so v, (m™—5,)=1. Hence the order of the kernel
of this endomorphism is equal to det M(m™—1,), with a rational prime
l different from the characteristic of %, which is denoted by v(m,s).
As det My(n,)=1 and the matrix M,(m™»;'—1) is of even degree 27, we
have also v(m,s)=det M,(1—="p;1).

Then the L-series L(u,x,A/V) of the covering A/V belonging to
an irreducible character x of G is given by the following logarithmiec
derivative:

d/du-log L(u, x, Al V)= ma{l/nSecax(o)v(m, o)}u"*

Theorem 1. Let Z(u, V) and Z(u, A) be the zeta-functions of V

and A over k. Then we have the equality Z(w, V)=Z(u,A) if and
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only +f V is also an abelian variety defined over k. When that is so,
G is abelian and AV is unramified and, moreover, all the L-series
L(w,x, Al V) with x different from the principal character x, are
trivially equal to 1.
Proof. Generally we have
djdu-{n-log (Z(u, A)/ Z(u, V))}=>nu{n-2(m, 1) —Socar(m, o)}u™ .
We divide the sum 37, in the right side of this equality as follows:
Zc;:szZom,
where Z, ranges over all the ecyeclic subgroups of G (not excluding
Z=({1}) and o, ranges over all the generators of Z,. For each fixed
J, we can transform all the matrices M(n,, ) and M,(m) into diagonal
forms simultaneously:
. 0 . 0
M(ﬂoj,i)::( Cj,i,p.. ’ ML(W)Z WP:
0 t. 0
Here we note that all ¢, ,, are some roots of unity and, for each fixed
J and p, all {;,, are algebraically conjugate to each other. Then we
have
n-v(m, 1)— S v(m, o)
:21‘211.1 ,,,,, pt(—l)t(n—zzj "j,ic-;’%*“l. ¢t ;,%,ut)(wm’ * .'rrl"t)m’
and, by the above remark and by the equality N=2172%%; 1) My, ="M
—237,200; Siiw * *Coiy, are non-negative rational integers. Hence we
have
dfdu-{n-log (Z(u,A)/Z(u,V))}
=2 et 202y~ D) M, (7 0T ) U
and so

(Z(u, A)/Z(u, V))"zHc{Hnl ,,,,, w(l"'”u,‘ ) R W}(—l)H[.
Then as, by Taniyama [5], all the characteristic roots =, of M,(m) are
of absolute values ¢'%, the equality Z(u, V)=2Z(u, A) implies that all
Nyy,...,y,,=0 and so all ;, ,=1. Hence then all 7, are the identity
automorphism of A and so A/V is unramified. Therefore the ‘only
if’ part of our theorem is proved. As for the ‘if’ part, it is easily
verified because V is then isogenous to A and M,(m,) and M,(w,) have
the same characteristic roots.
2. Theorem 2. If G is abelian, then the zeta-fumction Z(u, V)
and the L-series L(u,x,A/V) with x 2=x, are expressed as follows:
Z(u, V)=Py(uw)Py(u)- - - Py, _y(w)/ Po(u) Py(u)- - - Py, (u),
L(u, x, A|V)=@Q{ (w)QF(u) - - - Q52 (w)/QF(u) - - - Q5 o(w),
where P,(u) and Q(u) are polynomials of w such that
P(u)=1I,1—aj"u), Q(w)=1II,(1—pBF"u)
with |af?|, |B*|=q"* Especially Py(u)=1—u and P,,(u)=1—q"u.
Moreover if we put e=>(—1)deg P, and e(x)=],(—1)'deg Q, then
we have functional equations:
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Z(1/qw, V)=(—=1) ¢ uZ(u, V),
L(1/q"u, x, A] V)= (—1)®q @y D L(u, X, A] V).

Proof. As G is abelian and 7 commutes with every 7, we can
transform all the matrices M,(»,) and M,(7) into diagonal forms simul-
taneously:

C§6> 0 ' ™y 0
Me=| . ), M= .
0 &Y 0
Then the map ¢—{5 is an irreducible character of G, which is denoted
by 4;; and we have u(m,o)=det M(1—7"y;") = I (1—7}2,"(c))
=203 u(— Dy ey ) 2 - - 25 (0).  Hence we have, for any ir-
reducible character x of G (not excluding the principal character yx,),
dfdu-log L(u, x, A/ V) =102 1) 20 (T - o)™
X1/ Socax(o)ay) - - 25 (a)hu™ "5
and so, by the orthogonal relation of group-characters, we have
d/du-log L(u,x, A/ V)
=S >u(— I)LZM ..... pg X=}‘m"'7‘uc(wm A 'rrut)mu"‘— 1
Thus we have
L(u, x, A V)=TL{T0,, ..,y e oy, (L= 77+ = o, )} vt
As all 7, are of absolute values ¢, our first statement is proved.
As for functional equations, it suffices to note that = m,- - - 7, =detM ()
=q" and 44, -+ Ay (o) =det M (n,)=1=x,(c) for any ¢ in G.

Remark. In the case where G is not necessarily abelian, using
the fundamental result of Artin on induced characters in [1] and
Theorem 2, we can also prove that the n-th powers of Z(u, V) and
L(u,x, AlV) are polynomials of w and their zeros and poles are of
absolute values q=** with 0<t<2r.

3. Now let B be an abelian variety, defined over k, which is
generated by V and a rational map B3 of V into B (cf. Matsusaka [3]).
Then Bof is a rational map of A into B and we may assume, without
loss of generality, that A=Gf is a homomorphism of A into B and
then it is easily verified that A is onto. As a,=%,(0)+a, we have
Sflas)=r5(0) and so A(a,)=4(0)=0 for any ¢ in G. If x is a generic
point of A over k, then we have A(%)=2(x")=2(n.(x)+as)=2(n,(x)) and
80 A((ps—1)(x))=0. Thus the kernel of 12 must contain all the loci C,
of (p,—1)(x) over k for all s in G. (Clearly C, is an abelian subvariety
of A defined over k.) Conversely if, for an abelian variety B defined
over k, there exists a homomorphism A of A onto B with kernel
containing all C,, then there exists a rational map 8 of V onto B
such that 1=08.f.

Hence, by the characterization of Albanese varieties in Matsusaka
[8], there exist an abelian variety B defined over %k, which is isogenous
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to the Albanese variety of V, and a homomorphism 2 of A onto B,
whose kernel is the smallest algebraic subgroup of A containing all C,.
Let G be abelian. Then for any ¢, + in G, we have (5,—1)
(m:—1)=(9.—1)(n,—1) and so (5,—1)C. is contained in C,. Moreover, as
dim (9,—1)C, = dim (y,—1)*4 = 1/2- rank M,(p,—1)* = 1/2-rank M (n,—1)
=dim C,, we have also (p,—1)C,=C,. If we denote the elements of
G by o,=1, oy, +,0,_;, then the 0-component of the kernel of our
homomorphism 2 is clearly the locus C of (9, —1)(@)4 -+ +(ns,_,—1)
(x,.;) over k where «,---,x, , are independent generic points of A
over k; and then the dimension of C is given by >3 dim Cy,—>1ic;
dim (C,,NC, )+21<j<h dim (C,,NC,,NC,,)— . (Here conveniently we
denote the dimension of a component of Co,,NCs, N -+ ﬂCt,L by
dim (C, 0, (1Co, -+ ﬂC% ).) As 5,,—1 induces a homomorphism on the
0-component of C,,NC,, with finite kernel, dim (C,,NC,)) is equal to
the dimension of its image under 7,,—1, which is contained in (,,—1)
(7s,—1)A and so of dimension <1/2rank M,(n;,—1)(%, ;—1). While, as
G is abelian, (7,,—1)(7,,—1)A is contained in the 0-component of
Cs,NC;;,. Hence we have dim (C,,NC,;)=1/2-rank M(n;,—1)(7,,—1);
and similarly dim (C,, NCs, N - -+ NC,,)=1/2-rank Mz(%i,"l)("?%_l)
: ‘(%%—1). Therefore 2-dim C is equal to the number of such j’s
that 2,%=x, (with the notations in the proof of Theorem 2). Now
let D be an abelian subvariety of A, defined over k, such that any
point @ on A can be written as a=d-4c¢ with d in D and ¢ in C and
DNC is a finite subgroup of A. If D, is the 0O-component of the
kernel of #,,—1, then, as 7s,—1 has finite kernel on C,,, D,,NCs, is a
finite subgroup of A and so any point @ on A can also be written as
a=d,+c, with d;, in D, and ¢, in C,. Hence D is contained in D,
for any ¢, in G. Taking a prime ! which does not divide the order
of DNC, we have g,(4)=g,(D)+g,(C) (direct sum). Then as D and C
are defined over k, and as 5,,—1 is 0 on D and (y,,—1)C is contained
in C for any o; in G, the matrices M,(m,), M,(»,,—1) and M,(2) are
of the following forms:

Ml(wA)z( MZ(OWD) Mz(()'ﬂ'c) >’ M(%z 1) ( 0 l\(;"i )
M= 0),

where A is a non-singular matrix of degree 2.dim D=2-dim B; and
clearly we have AM,(m,)A'=M,(m;). Moreover, by the above argu-
ment, 2-dim D is equal to the number of such j’s that 1,=x, and so
all the characteristic roots of N, are equal to (2,(s;)—1)’s with 2,k x,.
As B and the Albanese variety of V have the same zeta-functions,
we have the following additional statement to Theorem 2.

Theorem 3. If G is abelian and we write as usual (by Theorem 2)

Z(u, V)=Py(u)Py(u) - - Py, _y(w)[ Po(u) Py(u)- - - P, (u) amd
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Z(u, A(V))=Pl(w)P{(w)- - - Pf_,(w)] P{(w)P}(u)- - - Pl(w),
where A(V) is the Albanese variety of V and s is the dimension of
A(V), then we have the equality P.(u)=P{(u).

4. Let V be a normal algebraic variety of dimension 7, defined
over an algebraic number field & of finite degree; let A be an abelian
variety such that f: A—V is a Galois covering, defined over k, with
group G and of degree m. We assume, moreover, that ¥V and A are
in some projective spaces. Then, by Shimura [4] and Taniyama [5],
almost all primes p in k are ‘non-exceptional’ for the covering A/V
in the following sense: if we denote the reduction modulo p of an
object by the symbol (b), f®: AP VP is a Galois covering, defined
over k™, with the same group G and of the same degree » and A®
is an abelian variety defined over k™.

Then we can define the L-series L(s,x,A/V) of the covering A/V
belonging to an irreducible character ¥ of G, by analogy with Hasse’s
zeta-functions of varieties, by

L(S’ X, A/ V)=H§)L((Np)~s: X, AP/ VQD)
where b ranges over all the non-exceptional primes for the covering
A/V. Then the following theorem is an immediate consequence of
Taniyama [5] and Theorem 2.

Theorem 4. If G is abelian and if A A) contains a subfield of
degree 2r, then the zeta-fumction C,(s) and the L-series L(s,x, Al V)
are expressed as products of L-functions of k with * Gréssencharaktere’
except for some factors of products of rational fumctions of q=* for
a finite number of q=Nb.
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