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52. Characterizations of Spaces with Dual Spaces

By Takesi ISIWATA
Tokyo Gakugei University, Tokyo

(Comm. by K. KUNUGI, M.J.A., April 12, 1960)

In the following we assume that spaces considered here are always
completely regular and continuous functions are real-valued one. Let
X*=X--X. We shall say that X has a dual space X* if there is
a homeomorphism of fl(X*) onto fiX which keeps X* pointwisely fixed.)

Then we write X** (X*)* (= fl(X*) X*) X or fiX= (X*). This
notations may be justified by the properties A), B) and C) in 1. A
subset B of X is said to be inessential to X if any bounded continuous
function defined on X--B is continuously extended over X. In 2 we
shall show that if X has a dual space, then every compact subset of
X is inessential to X and every finite subset of/X is inessential to fiX.
Using this results, we shall prove that X has a dual space if and only
if every proper open subset of X whose complement is compact has
a dual space.) We have given in [3 a stonean space with a dual
space. In 3, we shall give examples of spaces with dual spaces among
spaces of the following types: i) pseudo-compact spaces, ii) countably
compact, X-product spaces, iii) countably compact, non-paracompact,
normal spaces which have a uniform structure by the family of neigh-
borhoods of the diagonal of product with itself, and iv)countably com-
pact, non-normal spaces.

1. The proofs of the following properties are obvious.

A) Let Z and X be given spaces and let Y be a dense subset of
Z. If two homeomorphisms and @ from Z onto X coincide with each
other on Y, then (z)=@(z) for every z eZ.

Let ? be a homeoraorphisra from fl(X*) onto fiX which keeps X*
pointwisely fixed.

B) If X has a dual space X*, then every bounded continuous
function f* on X* has a continuous extension f=Fo- over fix where
F is a continuous extension of f* over (X*).

C) In B), let g be a bounded continuous function on X and g* be

1) The definition, in [3J, of a dual space (the first row of p. 148 and the last row
of p. 160) seems to be ambiguous, but the progression of arguments, in [3J, with re-
spect to a dual space was set in the sense of this paper.

2) This characterization may be of interest in view of the fact that the following
conditions are equivalent for any X: i) X is a stonean space with a dual space, ii) any
proper open subspace U of X has a dual space and X-U is inessential to X, and iii)
any proper dense subspace of X has a dual space. This fact is essentially proved in
[3, Th. 12] (but with an inexact statement).



No. 4] Characterizations of Spaces with Dual Spaces 201

its continuous extension over fiX. If G is a continuous extension of
g*lX* over (X*), then we have Go-l--g.

2. Lemma 1. If X has a dual space, then we have i) every point

of X has no compact neighborhoods, ii) every compact subset of X is
inessential to X, and iii) every finite subset of fiX is inessential to X.

Proof. i) Obvious.
ii) Let B be a compact subset of X, {U; a eF} be a base of

neighborhoods, in fiX, of B and let f be a bounded continuous function
on X--B. Since fiX is normal, there is a continuous function g for
each a eF such that g--0 on a neighborhood V, in fiX, contained in
U, g-I on flX--U and 0_g_l. We put f=fg on X--B and
f-0 on XV for each a. It is obvious that every f is continuous
on X. Let f* be a continuous extension of f over fiX. Now let us put
F(x)-supf*(x) for each xeX. For any point xeflX-B, since [U}

is a base of neighborhoods, in /gX, of B, we have f*(x)=f(x) on some
neighborhoocl (in fiX)of x for a, a0 where a0 is a suitable index in
F. This means that F is continuous on flX--B. By the method of
construction of f, it is obvious that f--
(fiX--B) is a continuous extension of f over X--B. Since flX--B X*
and X has a dual space X*, F has a continuous extension over fiX,
and hence over X. Therefore B is inessential to X.

iii) The proof is obtained by the analogous method as used in the
proof of ii) (or see

As easily seen from the proof of ii), any bounded continuous func-

tion on X--F has a continuous extension over flX--F (in fiX) for any
closed subset F of X even if X has not a dual space.

We shall introduce an order relation in a family of subsets of fiX
by the inclusion relation. Then for any point z e fiX--X, by Lemma 1
it is easily seen that X{z} has a dual space and fl(X{z})-flX.
Thus we have

Theorem 1. If a compact space Z is a Cech compactification of
a space X with a dual space, then there are no maximal subspaces of
Z with dual spaces whose Cech compactifications are Z.

Theorem 2. The following conditions are equivalent for any

space X:
i) X has a dual space,

ii) every proper open subspace of X whose complement is com-
pact has a dual space,

iii) every point of X has no compact neighborhoods and any
proper open subset of X whose complement is compact is inessential
to x,

iv) every point of X has no compact neighborhoods and X is
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inessential to every compact space Z containing X as a dense subset.

Proof. (i)o(iii)o(iv) was obtained by Theorems 10 and 11 in [3.
)- (ii). Suppose that U is open in X and B--X--U is compact.

Since B is compact and every point of X has no compact neighborhoods,

it is easy to see that U(in flX)-(X--U)(in ,2X)-flX. By Lemma 1,
any bounded continuous function on U has a continuous extension over
X, and hence fiX. Conversely, let f be a bounded continuous function
on fiX- U. Then, since fiX--UfiX--X and X has a dual space,

f l(flX-X) has a continuous extension over fiX, and hence over U.
Thus U has a dual space.

(ii)-( ). It is obvious that every point of X has no compact
neighborhoods. We shall first show that a dual space of U is W=fiX--U
for every open subspace U of X whose complement B is compact. Let
f be a bounded continuous function on U. Then by the assumption
V=X--{p}, peX--B, has a dual space. The f](V--B) has a continuous
extension over V by Lemma 1. This means that f is continuously
extended over X, and hence fiX. Therefore a dual space of U is W.

Let g be a bounded continuous function on X*. Then X* is an
open subspace of W whose complement is a compact set B. Thus g
has a continuous extension over W by Lemma 1. Since W is a dual
space of U, g can be continuously extended over U. This means that
f has a continuous extension over X, that is, X has a dual space.

Corollary.8) Let X be a space with a dual space: then we have
i) if MX has a dual space for a compact space M, then X*

is pseudo-compact,
ii) if X is pseudo-compact, then MX has a dual space for

any compact space M if and only if X* is pseudo-compact,
iii) if X has a dual space homeomorphic with itself, then MX

has a dual space for any compact space M if and only if X is pseudo-
compact.

Proof. Since X has a dual space, it is easily seen that every point
of MX has no compact neighborhoods. Suppose that MX has a
dual space. MfiX is a compactification of MX. By (iv) of Theorem
2, any bounded continuous function on MX* (=MflX--MX)can
be continuously extended over MX. Thus we have (MX*)--M

fiX. By Glicksberg’s theorem (see (G1)in 3 below) MX* is pseudo-
compact, and hence X* is also pseudo-compact.

(ii) and (iii). These are obvious from (i) and Glicksberg’s theorem
(G1).

3) We assume, in this corollary, that compact spaces have infinitely many points.
4) An example of such a space X is obtained by setting X a disjoint union of

open sets Y and Y* where Y is a space with a dual space.
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:. In this section we shall give examples of spaces with dual
spaces. Let {X.} be an uncountable set of spaces and Z--PX.b-(b.).
A subset of Z, denoted by v, is called a V-product with a base point
b if 2 consists of all points z--(z.) with z. b. for at most countably
many . Moreover we denote by v a set consisting of all points z--(z.)
of Z with z.--b, for at most countably many a.

Glicksberg and Corson have proved the following theorems.
(G1) 1, Theorem 1. Suppose that every X. is compact and P X.

aao
i infinite for every ao. Then Z--P(X) if and only if Z i peudo-

compact.
(G2) 1, Theorem 2. If each X. is compact and has at least two

points, then fl(X)-Z for every beZ.
(C1) [2, Theorem 1. If each X. is a complete metric space, then

a X-product X is normal for every bZ.
(C2) [2, Theorem 3. If each X. is a complete separable metric

space, then any X-procluct X has a uniform structure which is the
family of neighborhoods of the diagonal of XX for every be Z.

From these theorems we shall construct spaces with a dual space.
Example 1. If, in (G2), b and c are points in Z such that b. = c.

for every a, then Xb and Xc are countably compact and any subspace
Y such that either v y Z-- or Y Z-- has a dual space
and flY=Z.

This follows from (G2) and the fact that XYX implies

Example 2. If, in (G2), b is a point such that each coordinate b.
is not a cluster point of a sequence of X., then X is countably compact
and any subspace Y such that either X YZ--X or S YZ--
has a dual space and fl Y= Z.

This is obtained by the same methods as used in the proof of (G2)
(or see [6).

Next we shall notice the following: i) a space Y, in Examples 1
and 2, is always pseudo-compact [5, and ii) an existence of the point
b mentioned in Example 2 is shown by the following way: if Y. is
discrete and X-fl Y, then the point b is given by (b) where b. e Y
for every a.

Example 3. If each X. is a compactum, then any X-product v,
bZ, has a dual space and X is a countably compact, non-paracompact,
normal space which has a uniform structure by the family of neigh-
borhoods of the diagonal of vZ.

By (C1) and (C2), 2’ has all properties above except a non-para-
compactness. A non-paracompactness follows from the facts that a
countably compact space with a complete structure is compact and a
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paracompact space has a complete structure.
Example 4. Let 2’ be a 2-product in Example 3; then 2Z is

a countably compact, non-normal space with a dual space and fl(Z Z)
=ZZ.

This follows from the facts that i) (G1), ii) a product of a countably
compact normal space with its any compactification is not normal 4,
Theorem 1], and iii) a product of a countably compact space with a
compact space is always countably compact.
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