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Department of Mathematics, Tokyo University of Education
(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1961)

1. Suggested by a well-known theorem of C. H. Dowker [1] that
a topological space is countably paracompact and normal if and only
if the product space X XI is normal, we have established the follow-
ing theorem in a previous paper [2].

Theotem 1.1. A topological space X 1is wm-paracompact and
normal if and only if the product space XXI™ is normal, where m
18 an infinite cardinal number.

Here a topological space X is called m-paracompact if any open
covering of power<m admits a locally finite open refinement, and I™
means the product space of m copies of I, where m is a cardinal
number and I is the closed line interval [0, 1]. A topological space
X is, by definition, paracompact if X is m-paracompact for any cardinal
number m; furthermore, X is paracompact if X is m-paracompact for
a cardinal number m not less than the power of an open base of X.
Accordingly, Theorem 1.1 gives a new characterization of paracompact
spaces. Of course, ‘““ §,paracompact” is nothing else *countably
paracompact ”.

The purpose of this paper is to prove the following theorem
which is a generalization of Theorem 1.1.

Theorem 1.2. A topological space X i8 m-paracompact and
normal if and only if the product space X XC™ is normal, where C
18 any compact metric space containing at least two points and C™
means the product space of m copies of C, and m i8 an infinite car-
dinal number.

As a special case where C is a space consisting of exactly two
points we obtain the following theorem.

Theorem 1.3. A topological space X is m-paracompact and normal
if and only if the product space XX D™ 18 mormal, where D is a
discrete space comsisting of two points and D™ means the product
space of m copies of D, and m 18 a cardinal number=1.

The space D™ is called a Cantor space, and D% is the Cantor
discontinuum.

It should be noted that in case m= ¥, as far as the “if” part
is concerned Theorem 1.3 gives a stronger form than Dowker’s theorem
while Theorem 1.1 gives a weaker form, and that for a finite cardinal
number m=>1, Theorem 1.3 is true but Theorem 1.1 is not.
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2. We shall begin with a lemma concerning closed mappings.

Lemma 2.1. Let f, be a closed continuous mapping of a topological
space X, onto another topological space Y, such that f;*(y) is compact
Sfor each point y of Y, 1=1,2. If we put g(z,, 2.)=(f1(2,), fo(2,)) for
z,€X, 1=1,2, then g is a closed continuous mapping of X, X X, onto

Proof. Let A be any felosed subset of X;XX,. Suppose that
(Y1, ¥:)€9(A). Then, for any.open set H, of Y, such that y,¢H, we have
(Hy X H,) ~9(A)F¢. Hence (fi'(H,)X fi'(H;))~A¥x¢. Therefore we
have (f7(¥,) X f:'(¥:)) ~AX9; because, otherwise there would exist
an open set G; of X, and an open set G, of X, such that (G, XG;) ~A
=4, fiiW)CG, i=1,2 since fi'(y,) is compact for i=1,2, and we
would have (fi*(L,) X fi'(Li)) ~A=¢ where L,=Y,—f(X,—G), i=1,
2, since f;(L)CG, because of the closedness of f,. Therefore (¥, ¥:)
€g(A). This shows that g is a closed mapping.

Remark. If for at least one ¢, f, does not satisfy the condition
that f:(y) be compact for each point ¥ of Y, the closedness of the
mapping g is not concluded in general. We shall give an example.

Let X, be the space of real numbers and Y, the quotient space
obtained from X, by contracting the set of all integers to a point
Yo let f, be the identification map. Let f;: X;—> Y, be the identity
map with X;=Y,=I. Then ¢g: X, XX, Y,XY; defined by g(z,, )
=(f1(2,), fo(x:)) is not a closed mapping; because, if A="{nXx[0,1
—1/(1+|n])]|n=0, =1, +2,---}, we have (y,, 1)eg(4)—g(A4).

3. Let Q be a compact Hausdorff space. We shall say that a
topological space X is Q-paracompact, if XX @ is normal.

Theorem 3.1. Let Q and Q@ be any two compact Hausdorff
spaces. If Q 1s either a closed subset of Q or a continuous image
of Q, then every Q-paracompact space is Q-paracompact.

Proof. Suppose that Q' is a continuous image of Q; let f be a
continuous mapping of Q onto Q. Let X be a Q-paracompact space
and put g(z, ¢9)=(2, f(g)) for zeX, qeQ. Then g is a closed continuous
mapping of XXQ onto XXQ by Lemma 2.1. Since X is Q-paracom-
pact, XX Q is normal, and hence XX@Q' is normal. Therefore X is
@Q’-paracompact. In case Q' is a closed subset of Q, every Q-paracom-
pact space is clearly Q’-paracompact.

Now we are in a position to prove Theorem 1.2. To prove The-
orem 1.2 it is sufficient to prove the following theorem in view of

Theorem 1.1.
Theorem 3.2. Let m be an infinite cardinal number. Let X be

a topological space. Then the following statements are equivalent.
(a) X 8 I™-paracompact.
(b) X 18 C™-paracompact,
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(¢) X is D™-paracompact.
Here C 18 a compact metric space containing at least two points and
D 48 a discrete space consisting of two points.

Proof. C™ is homeomorphic to a closed subspace of I™. Hence
we have the implication (a)—(b) by Theorem 3.1. Similarly (b)— (c)
is proved since D™ is a closed subspace of C™. Since every compact
Hausdorff space with an open base of power<m is a continuous image
of a closed subset of D™, I™ is a continuous image of a closed subset
of D™ and hence the implication (c)->(a) is proved by Theorem 3.1.

References

[1] C. H. Dowker: On countably paracompact spaces, Can. J. Math., 3, 219-224
(1951).

[2] K. Morita: Paracompactness and product spaces, forthcoming.



