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By Shohei SUGIYAMA
Department of Mathematics, School of Science and Engineering
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(Comm. by Zyoiti SUETUNA, M, J. A,, May 19, 1965)

1. Let M be a family of functions continuous in I: 0<t< oo
in the m-dimensional vector space. Then, we define an operator T
satisfying the following conditions:

(i) for any x in M, Tx is also contained in MW

(ii) for any sequence {x,} (x, €M) uniformly convergent in I,
{Tx,} is also uniformly convergent in I;¥

(iii) for any scalar functions » and v continuous in I, if u=wv
is satisfied for 0=t¢<s, where s is an arbitrary constant, then the
inequality Tu=Twv remains valid for ¢=s.

Then, let us consider a functional-differential equation such that
(1) =, x, Tx), x(0)=2x, tel.

If we choose the operator and the function f suitably, the
equation (1) yields various types of equations, for example, differ-
ential equations, integro-differential equations, difference-differential
equations, and so on.

In the sequel, the existence of continuous solutions of (1) in I is
supposed to be established. However, we need not assume the unique-
ness of solutions, so far as we are concerned with the boundedness
and stability problems.”

2. We first introduce a V-function as follows. Let V(¢, z) be
a function of ¢t and 2 satisfying the following conditions:

(i) VI(¢, ) is continuous and non-negative in I and |2 |< oo;

(ii) V(¢, x) satisfies the Lipschitz condition such that

|V, )=Vt v) | k@) [2—y |,
where k(t) is continuous in I;

(iii) lim V{(¢, €)= co uniformly in t¢€ I.

In orlélg; to derive some results on the boundedness, it is usefull
to introduce two quantities dV(¢, «, y) and DV(¢, ) by setting

bV(t, 0, 9)=lm- (Vit-+h, a-+hAt, &, 1) = V¢, ),

DV, z(t)):%%(V(t—l—h, 2(t+h)— V{2, 2(t)),

1) This means that the operator T is continuous.
2) The author’s paper, in which some theorems on the existence and unique-
ness of continuous solutions has been discussed, will shortly appear.
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where x,y are arbitrary points, and z(f) is an arbitrary function in
M. Then, it is not difficult to prove that the equality

(2) bV, (t), (Tx)()=DV(E, (1))

remains valid in I for any solution «(t) of (1).

Now, we define a function w(t, x, y) such that it is continuous
and non-negative for I, 0=S2< oo, —oo<y<oo, Furthermore, it is
supposed that w(¢, x, y) is monotone increasing with respect to y for
any fixed ¢ and . With this choice of the function w(t, x,y), for
any non-negative constant ¢=0, we consider a functional-differential
equation such that
(3) r'=w(, r, Tr)+e, r(0)=r,+e¢, tel,

for which the existence of the maximal solution ».(t) of (3) continuous
in I is supposed to be established.

Theorem 1. If the inequality

(4) V¢, 2, Te)= (i, V(E, 2), (TV)(, )
is fulfilled for any tel and x, the relation
(5) V(t, 2)=7y(?)

remains valid wn I for any continuous solution x of (1), provided
that V(0, x)<r, is satisfied.

Proof. From the continuity of «(t), r.(t), and V, it turns out
that there exists an interval 0=<t¢<{, in which the inequality
V(¢t, x(t))<r.(t) remains valid for any solution x(¢) of (1).

Then, if we denote by t, the supremum of ¢, and if %, is finite,
from the continuity of V, «, r,, and from (2), (4), it follows that

Vit,, 2(te)="rto),
(ty, Vto, 2(80), (TV)(E, #(%)))+e
= @(ty, r(to), (Tr.)(t,)+e
=7,(t,)
=lim /re(t)_,,.E(tO)
t-tg t—1t,
<Tim V&, () — V(& 2(t,))
T ot t—t,
=DV(2, x(t,))
=0 V(& (o), (T)(%))
so(ty, V(b ©(t0), (TV)(t, 2(t0),
which is a contradiction, since ¢>0. Hence, the inequality
Vi, x)=7r.(t)
is fulfilled in I. Since 7.(t) is monotone decreasing as é— -0, it uni-
formly converges to the maximal solution 7,(¢) of (3) corresponding to
€¢=0. Thus, we have the inequality (5) in I.
By means of Theorem 1, we obtain the following
Corollary. If the maximal solution of (3) is bounded, the solu-




362 S. SuGlyAMA [Vol. 41,

tions of (1) are bounded.

Proof. On the contrary, if we suppose that a solution x(t) of
(1) is not bounded, there exists a sequence {t;}, {,;—c such that
| (t;) |—co. Then, from the inequality (5) and the definition (iii) of
V, it follows that

7o) = V(Ei, #(8i))— o,
which contradicts the boundedness of »(¢).

If we consider a particular case such that V=| x|, the inequality
(4) is reduced to

| f¢, %, To) |0, |z, | Tx]).
Furthermore, suppose that w(t, z, ) is of the form such that
o(t, =, y)=kE)(M(| « )+ My ),
where k(t) is continuous in I and M(r) is piecewise continuous, posi-
tive, non-decreasing for 0<r< o, and M(0)=0. Then, we have the
following
Theorem 2. Suppose that the inequality
| A, », 9) [SEEM( = )+M(y D)
18 satisfied and k(t) is integrable over I, but the integral
[ de
M(p)
18 divergent. Then, if T 1is the bounded operator, any solution
of (1) s bouuded.

Proof. Since T is bounded, there exists a constant a>0 such
that | Te |<a| x| for any x € M. Then, if we consider an equation
such that
(6) r'=k(E)(M(r)+ M(| Tr ),
for any solutions of » of (6) we have the inequalities such that

r' S k(t)(M(r)+ M(ar))
(7 <2k(t)M(r) 0<asl),
< 2k(t)M(ar) A=sa< o).
From (7), it follows along the solution # that
r dp Ct
Sro iy =2 | @)ds
for 0<a=1, and
S‘" _dp ézyk(s)ds
arg M(0) 0
for 1<a< . Hence, it follows that » must be bounded in I.



