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110. On the Alexander.Pontrjagin Duality Theorem

By Hikosaburo KOMATSU
Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., June 12, 1968)

Let V be an open set in R” and let K be a compact subset of V.
In [2] we proved the duality between H"-?(K, C) and HZ(V, C)
=H?»(V mod V-K, C), p=0,1, ..., n, under the assumption that
dim H»-?»(K, C) is at most countable for p=0,1, ..., n. The purpose
of this note is to show that the assumption holds unconditionally and
therefore that the duality holds for any compact set K.

Theorem 1. Let K be a compact set in R and let F be o field.
Then the dimension of the cohomology group H?*(K, F) (defined as in
Godement [1]) is at most countable for any p.

Proof. Since

H»(K, F)=lim H*(U, F)
—>

when U runs over all neighborhoods of K by Théoréme 4.11.1 of [1],
it suffices to show that there exists a countable fundamental system
of neighborhoods of K consisting of open sets U; such that
dim H?(U,, F) < oo.

Clearly we can find a countable fundamental system of neighbor-
hoods of K. Let V be a member. At each point « ¢ K, there is an
open ball W, containing x and contained in V. Choose a finite sub-
covering W, of the covering {W,;xze K} and let U=UW,. If we
denote by 94 the open covering {W,} of U, it follows from Leray’s
theorem (Théoréeme 5.2.4 of [1]) that H?(U, F) is isomorphic to the
cohomology group H?(9Y, F) of the covering 9)/. The latter is clearly
of finite dimension. Thus there is an open set U which satisfies
KcUCYV and dim H?>(U, F) < co.

Now, combining Theorem 1 with Theorem 11 of [2] (cf. also
Theorem 20 (ii) of [3]), we obtain the following Alexander-Pontrjagin
duality theorem.

Theorem 2. Let K and V be as in Theorem 1. Then H»-»(K, C)
and H2(V, C) have the naturael structure of the dual Fréchet-Schwartz
space and of the Fréchet-Schwartz space, respectively, and they are
the strong dual spaces of each other. More precisely there is an at
most countable cardinal number b*-? such that H»-»(K, C)=C®"™»
and HL(V, C)=C"""?,

Consequently, the Jordan-Brouwer theorem (Theorem 12) of [2]
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is improved as follows:

Theorem 3. Let V, K, and b be as in Theorem 2. Then, the
number of connected components of V—K is equal to the sum of b»*
and the number of connected components of V.
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