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203. On the Product of M-Spaces. 1

By Tadashi IsHII, Mitsuru TSUDA, and Shin-ichi KUNUGI
Utsunomiya University

(Comm. by Kinjird KUNUGI, M. J.A., Nov. 12, 1968)

1. Introduction. In the present paper all spaces are assumed to
be Hausdorff. In his previous paper [2], K. Morita has introduced
the notion of M-spaces. A space X is called an M-space if there exists
a normal sequence {UI,;|?=1,2, -..} of open coverings of X satisfying
the condition (M) below :

If {K,} is a sequence of non-empty subsets of X such that K,,,
(M) { cK;, K;c St(x,, II,) for each ¢ and for some fixed point z, of X,
then NK;x¢.
As is easily verified, Condition (M) is equivalent to the condition
(M} below :
If {x;} is a sequence of points of X such that x; ¢ St(x,, 11,) for
(Mo){ each ¢ and for some fixed point z, of X, then {z;} has an ac-
cumulation point.
Hereafter we use Condition (M) in place of Condition (M).

As for the product X xY of two M-spaces X and Y, it seems to
be unknown whether X x Y is also an M-space or not. We can give
an affirmative answer for this problem in the following cases :

(a) X satisfies the first axiom of countability.

(b) X islocally compact.

(c¢) X is paracompact.

The purpose of our papers I and II is to introduce the notion of the
spaces belonging to the class € and to prove a more general theorem
(cf. Theorem 1.1 in II) as follows: If a space X belongs to the class
€, then the product X x Y is also an M-space for any M-space Y. We
denote by € the class of all spaces X such that there exists a normal
sequence {lI;} of open coverings of X satisfying the condition (x)
below :

If {x;} is a sequence of points of X such that z;, e St(x,, 11,) for
o) each 7 and for some fixed point x, of X, then there exist a sub-

sequence {&;,,(n=1,2, ...} of {x;} which has the compact

closure.
The class € contains all M-spaces satisfying one of conditions (a), (b),
and (c¢), and further the spaces belonging to € have the following
properties.

(i) If f: XY is a quasi-perfect map (i.e., a continuous closed
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surjective map such that f-*(y) is countably compact) of a space X
belonging to © onto a normal space Y, then Y belongs to € (cf.
Theorem 2.4).

(i) If X,, i=1,2, .., belong to ¢, then the product iﬁ X, be-
=1

longs to € (cf. Theorem 1.3 in II).

2. The spaces belonging to €.

Theorem 2.1. If a space X belongs to €, then X is an M-space.

Proof. Since X belongs to €, there exists a normal sequence
{11;} of open coverings of X satisfying Condition (x). Let {x;} be a
gsequence of points of X such that z, e St(x,, 11,) for each ¢ and for
some fixed point z, of X. We shall prove that {z;} has an accumula-
tion point. For this purpose we can assume without loss of generality
that {z;} contains a subsequence {x;,} consisting of distinct points.
Since ®;,, € St(x,, U1,) for every n, by Condition () there exists a sub-
sequence {z,} of {z;,,} which has the compact closure. Consequently,
{7} has an accumulation point. If otherwise, {«/} must be discrete
and closed. Since {z}} consists of distinct points, it cannot be compact.
Therefore {11,} satisfies Condition (M,). This completes the proof.

Remark. In the proof of Theorem 2.1, it is sufficient to assume
that the closure of the subsequence {x,} of {x,.,} is countably compact.

The converse of Theorem 2.1 is not valid in general, as is shown
in Theorem 2.3.

Theorem 2.2. If an M-space X satisfies one of the following con-
ditions, then X belongs to € :

(a) X satisfies the first axiom of countability.

(b) X is locally compact.

(e) X is paracompact.

Proof. Since X is an M-space, there exists a normal sequence
{1,} of open coverings of X satisfying Condition (M,). Let {x;} be a
sequence of points of X such that z; e St(x,, II;) for each ¢ and for
some fixed point x, of X. Then, by Condition (M), {x;} has an ac-
cumulation point 2.

(i) If X satisfies the first axiom of countability, then {x;} con-
tains a subsequence {2;,} which converges to #’. Clearly the closure
of {;.,} is compact. Thus X belongs to €.

(ii) If X is locally compact, then there exists a neighborhood
U(a’) of #’ which has the compact closure. Since U(x’) contains in-
finite number of elements of {x;}, we denote them by {;,}. Then
{2;(ny} has clearly the compact closure. Thus X belongs to €.

(iii) If X is paracompact, any countably compact subset is com-
pact. Since {z;} has accumulation points in N St(x,, 11;) and nowhere
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else, the closure of {«;} is countably compact, and hence it is compact.
Thus X belongs to €.

Remark. A space X belonging to € does not necessarily satisfy
the first axiom of countability, because there is a compact space which
does not satisfy the first axiom of countability. Further a space be-
longing to € is not necessarily locally compact, because there is a
metric space which is not locally compact.

Theorem 2.3. There exists an M-space which does not belong to
€, and further there exists a space which belongs to € but is not a
paracompact M-space.

To prove Theorem 2.3, we mention two examples of the spaces
satisfying the required properties.

Example 1. (An M-space which does not belong to €). We show
that a countably compact space A,, which was constructed by J. Novak
[4], satisfies the required conditions. Let S(N) be the éech-compacti-
fication of the set N of natural numbers. Then by [4] there exist two
subsets P and @ of B(N) such that PUQ=pS(N)—N, PN Q=¢ and that
SNPx¢ and SNQx¢ for any countable infinite subset S of B(N).
Let us put A,=PUN. Then the subspace 4, of B(N) is countably
compact, and hence it is an M-space.

Now we shall prove that the space A, does not belong to €. Let
S be any countable infinite subset of A,. Then the set S has no
compact closure in A4,. If otherwise, then the closure of S in A4, is
compact, and hence it is compact in S(N), too. But, as the construc-
tion of the sets P and @ shows, the closure of S in S(N) contains a
point of the set Q=p(N)—A,. This is a contradiction. Let {lI,} be
any normal sequence of open coverings of A,, and let ;€ P. Then
St(x,, 11;) contains infinite points of N for each 4, and hence we can
choose a sequence {n;} of distinct points of N such that n; e St(z,, 11,).
As is shown above, the closure of {n;} in A, is not compact. Thus the
space A4, does not belong to €.

Example 2. (A space X which belongs to € but is not a para-
compact M-space). Let X be the space {@|a <} of ordinals with the
order topology, where £ is the first uncountable ordinal. Since X is
countably compact and satisfies the first axiom of countability, it
belongs to €. But it is not paracompact.

Theorem 2.4. Let f:X—Y be a quasi-perfect map. If X be-
longs to € and if X or Y is normal, then Y belongs to €. If f:X—-Y
18 perfect and if Y belongs to €, then X belongs to G.

The proof of Theorem 2.4 is performed by the similar way as
in the proof of the first part of [3, Theorem 2.2]. For this purpose
we introduce a class €* of the spaces. We denote by €* the class of
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all spaces X such that there exists a sequence {§;|i{=1,2, ...} of
locally finite closed coverings of X satisfying Condition (x). As for
the spaces belonging to ©*, the following lemmas are valid.

Lemma 2.5. Let f: X—Y be a quasi-perfect map. If X belongs
to ©*, then Y also belongs to €*.

Lemma 2.6. If X belongs to G, then X belongs to €* and satisfies
the property (C) below :

For any locally finite collection {F,} of closed sets of X there
(C) { exists a locally finite collection {G,} of open sets of X such that
F,CG, for each A.
In case X is normal, the converse is true.

Since Lemma 2.5 can be proved by the similar way as in the
proof of [1, Theorem 2.3] and Lemma 2.6 can be proved by the similar
way as in the proof of [3, Theorem 1.1], we omitt the proof.

Proof of Theorem 2.4. If X is normal, sois Y. Further by [3,
Lemma 2.1], if X has Property (C), so has Y. Hence the first part fol-
lows from Lemmas 2.5 and 2.6. The second part follows from the
fact that, if f: X—Y is perfect, then f-(C) is compact for every com-
pact set C of Y. Thus the proof is completed.

By the same way as in the proof of [3, Theorem 3.1], it follows
from Theorem 2.4 that, if {4,|4 e 4} is a locally finite closed covering
of a space X and if each 4, is a normal space belonging to €, then X
is a normal space belonging to €. In [3], K. Morita shows by an
example that a space Y which is the union of closed subspaces C,,
i=1, 2, each of which is an M-space, is not an M-space in general.
In this example, each C; is a locally compact M-space, and hence
belongs to €, while Y does not belong to §.

Finally we note that a space belonging to €* does not belong to €
in general. This is an immediate consequence of the following result
obtained by K. Morita [3]: There is a perfect map f:X—Y such
that X is a locally compact M-space but Y is not an M-space. In fact,
Y belongs to €* by Lemma 2.5 but does not belong to €.
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