203. On the Product of M-Spaces. I

By Tadashi Ishii, Mitsuru Tsuda, and Shin-ichi Kunugi Utsunomiya University

(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1968)

- 1. Introduction. In the present paper all spaces are assumed to be Hausdorff. In his previous paper [2], K. Morita has introduced the notion of M-spaces. A space X is called an M-space if there exists a normal sequence $\{\mathfrak{U}_i | i=1,2,\cdots\}$ of open coverings of X satisfying the condition (M) below:
- $(\mathbf{M}) \left\{ \begin{array}{l} \text{If } \{K_i\} \text{ is a sequence of non-empty subsets of } X \text{ such that } K_{i+1} \\ \subset K_i, K_i \subset \operatorname{St}(x_0, \, \mathfrak{U}_i) \text{ for each } i \text{ and for some fixed point } x_0 \text{ of } X, \\ \text{then } \cap \bar{K}_i \, \dot{=} \, \phi. \end{array} \right.$

As is easily verified, Condition (M) is equivalent to the condition (M_n^*) below:

 (\mathbf{M}_0) { If $\{x_i\}$ is a sequence of points of X such that $x_i \in \mathrm{St}(x_0, \, \mathfrak{U}_i)$ for each i and for some fixed point x_0 of X, then $\{x_i\}$ has an accumulation point.

Hereafter we use Condition (M_0) in place of Condition (M).

As for the product $X \times Y$ of two M-spaces X and Y, it seems to be unknown whether $X \times Y$ is also an M-space or not. We can give an affirmative answer for this problem in the following cases:

- (a) X satisfies the first axiom of countability.
- (b) X is locally compact.
- (c) X is paracompact.

The purpose of our papers I and II is to introduce the notion of the spaces belonging to the class $\mathfrak C$ and to prove a more general theorem (cf. Theorem 1.1 in II) as follows: If a space X belongs to the class $\mathfrak C$, then the product $X \times Y$ is also an M-space for any M-space Y. We denote by $\mathfrak C$ the class of all spaces X such that there exists a normal sequence $\{\mathfrak U_i\}$ of open coverings of X satisfying the condition (*) below:

(*) $\begin{cases} \text{ If } \{x_i\} \text{ is a sequence of points of } X \text{ such that } x_i \in \operatorname{St}(x_0, \, \mathfrak{U}_i) \text{ for each } i \text{ and for some fixed point } x_0 \text{ of } X, \text{ then there exist a subsequence } \{x_{i(n)} \, | \, n = 1, \, 2, \, \cdots \} \text{ of } \{x_i\} \text{ which has the compact closure.} \end{cases}$

The class \mathbb{C} contains all M-spaces satisfying one of conditions (a), (b), and (c), and further the spaces belonging to \mathbb{C} have the following properties.

(i) If $f: X \rightarrow Y$ is a quasi-perfect map (i.e., a continuous closed

surjective map such that $f^{-1}(y)$ is countably compact) of a space X belonging to \mathbb{C} onto a normal space Y, then Y belongs to \mathbb{C} (cf. Theorem 2.4).

- (ii) If X_i , $i=1, 2, \dots$, belong to \mathfrak{C} , then the product $\prod_{i=1}^{n} X_i$ belongs to \mathfrak{C} (cf. Theorem 1.3 in II).
 - 2. The spaces belonging to C.

Theorem 2.1. If a space X belongs to \mathbb{C} , then X is an M-space.

Proof. Since X belongs to \mathfrak{T} , there exists a normal sequence $\{\mathfrak{U}_i\}$ of open coverings of X satisfying Condition (*). Let $\{x_i\}$ be a sequence of points of X such that $x_i \in \operatorname{St}(x_0, \mathfrak{U}_i)$ for each i and for some fixed point x_0 of X. We shall prove that $\{x_i\}$ has an accumulation point. For this purpose we can assume without loss of generality that $\{x_i\}$ contains a subsequence $\{x_{i(n)}\}$ consisting of distinct points. Since $x_{i(n)} \in \operatorname{St}(x_0, \mathfrak{U}_n)$ for every n, by Condition (*) there exists a subsequence $\{x_n'\}$ of $\{x_{i(n)}\}$ which has the compact closure. Consequently, $\{x_n'\}$ has an accumulation point. If otherwise, $\{x_n'\}$ must be discrete and closed. Since $\{x_n'\}$ consists of distinct points, it cannot be compact. Therefore $\{\mathfrak{U}_i\}$ satisfies Condition (M_0) . This completes the proof.

Remark. In the proof of Theorem 2.1, it is sufficient to assume that the closure of the subsequence $\{x'_n\}$ of $\{x_{i(n)}\}$ is countably compact.

The converse of Theorem 2.1 is not valid in general, as is shown in Theorem 2.3.

Theorem 2.2. If an M-space X satisfies one of the following conditions, then X belongs to \mathfrak{C} :

- (a) X satisfies the first axiom of countability.
- (b) X is locally compact.
- (c) X is paracompact.

Proof. Since X is an M-space, there exists a normal sequence $\{\mathfrak{U}_i\}$ of open coverings of X satisfying Condition (M_0) . Let $\{x_i\}$ be a sequence of points of X such that $x_i \in \operatorname{St}(x_0, \mathfrak{U}_i)$ for each i and for some fixed point x_0 of X. Then, by Condition (M_0) , $\{x_i\}$ has an accumulation point x'.

- (i) If X satisfies the first axiom of countability, then $\{x_i\}$ contains a subsequence $\{x_{i(n)}\}$ which converges to x'. Clearly the closure of $\{x_{i(n)}\}$ is compact. Thus X belongs to \mathfrak{C} .
- (ii) If X is locally compact, then there exists a neighborhood U(x') of x' which has the compact closure. Since U(x') contains infinite number of elements of $\{x_i\}$, we denote them by $\{x_{i(n)}\}$. Then $\{x_{i(n)}\}$ has clearly the compact closure. Thus X belongs to \mathfrak{C} .
- (iii) If X is paracompact, any countably compact subset is compact. Since $\{x_i\}$ has accumulation points in $\bigcap St(x_0, \mathfrak{U}_i)$ and nowhere

else, the closure of $\{x_i\}$ is countably compact, and hence it is compact. Thus X belongs to \mathfrak{C} .

Remark. A space X belonging to $\mathfrak C$ does not necessarily satisfy the first axiom of countability, because there is a compact space which does not satisfy the first axiom of countability. Further a space belonging to $\mathfrak C$ is not necessarily locally compact, because there is a metric space which is not locally compact.

Theorem 2.3. There exists an M-space which does not belong to \mathbb{C} , and further there exists a space which belongs to \mathbb{C} but is not a paracompact M-space.

To prove Theorem 2.3, we mention two examples of the spaces satisfying the required properties.

Example 1. (An M-space which does not belong to $\mathfrak S$). We show that a countably compact space A_1 , which was constructed by J. Novák [4], satisfies the required conditions. Let $\beta(N)$ be the Čech-compactification of the set N of natural numbers. Then by [4] there exist two subsets P and Q of $\beta(N)$ such that $P \cup Q = \beta(N) - N$, $P \cap Q = \phi$ and that $\bar{S} \cap P \neq \phi$ and $\bar{S} \cap Q \neq \phi$ for any countable infinite subset S of $\beta(N)$. Let us put $A_1 = P \cup N$. Then the subspace A_1 of $\beta(N)$ is countably compact, and hence it is an M-space.

Now we shall prove that the space A_1 does not belong to \mathfrak{C} . Let S be any countable infinite subset of A_1 . Then the set S has no compact closure in A_1 . If otherwise, then the closure of S in A_1 is compact, and hence it is compact in $\beta(N)$, too. But, as the construction of the sets P and Q shows, the closure of S in $\beta(N)$ contains a point of the set $Q = \beta(N) - A_1$. This is a contradiction. Let $\{\mathfrak{U}_i\}$ be any normal sequence of open coverings of A_1 , and let $x_0 \in P$. Then $\mathrm{St}(x_0, \mathfrak{U}_i)$ contains infinite points of N for each i, and hence we can choose a sequence $\{n_i\}$ of distinct points of N such that $n_i \in \mathrm{St}(x_0, \mathfrak{U}_i)$. As is shown above, the closure of $\{n_i\}$ in A_1 is not compact. Thus the space A_1 does not belong to \mathfrak{C} .

Example 2. (A space X which belongs to $\mathfrak E$ but is not a paracompact M-space). Let X be the space $\{\alpha \mid \alpha < \Omega\}$ of ordinals with the order topology, where Ω is the first uncountable ordinal. Since X is countably compact and satisfies the first axiom of countability, it belongs to $\mathfrak E$. But it is not paracompact.

Theorem 2.4. Let $f: X \rightarrow Y$ be a quasi-perfect map. If X belongs to \mathbb{C} and if X or Y is normal, then Y belongs to \mathbb{C} . If $f: X \rightarrow Y$ is perfect and if Y belongs to \mathbb{C} , then X belongs to \mathbb{C} .

The proof of Theorem 2.4 is performed by the similar way as in the proof of the first part of [3, Theorem 2.2]. For this purpose we introduce a class ©* of the spaces. We denote by ©* the class of

all spaces X such that there exists a sequence $\{\mathfrak{F}_i | i=1,2,\cdots\}$ of locally finite closed coverings of X satisfying Condition (*). As for the spaces belonging to \mathfrak{S}^* , the following lemmas are valid.

Lemma 2.5. Let $f: X \rightarrow Y$ be a quasi-perfect map. If X belongs to \mathbb{C}^* , then Y also belongs to \mathbb{C}^* .

Lemma 2.6. If X belongs to \mathbb{C} , then X belongs to \mathbb{C}^* and satisfies the property (C) below:

(C) $\begin{cases} For \ any \ locally \ finite \ collection \ \{F_{\lambda}\} \ of \ closed \ sets \ of \ X \ there \\ exists \ a \ locally \ finite \ collection \ \{G_{\lambda}\} \ of \ open \ sets \ of \ X \ such \ that \\ F_{\lambda} \subset G_{\lambda} \ for \ each \ \lambda. \end{cases}$

In case X is normal, the converse is true.

Since Lemma 2.5 can be proved by the similar way as in the proof of [1, Theorem 2.3] and Lemma 2.6 can be proved by the similar way as in the proof of [3, Theorem 1.1], we omitt the proof.

Proof of Theorem 2.4. If X is normal, so is Y. Further by [3, Lemma 2.1], if X has Property (C), so has Y. Hence the first part follows from Lemmas 2.5 and 2.6. The second part follows from the fact that, if $f: X \rightarrow Y$ is perfect, then $f^{-1}(C)$ is compact for every compact set C of Y. Thus the proof is completed.

By the same way as in the proof of [3, Theorem 3.1], it follows from Theorem 2.4 that, if $\{A_{\lambda} | \lambda \in A\}$ is a locally finite closed covering of a space X and if each A_{λ} is a normal space belonging to \mathfrak{C} , then X is a normal space belonging to \mathfrak{C} . In [3], K. Morita shows by an example that a space Y which is the union of closed subspaces C_i , i=1,2, each of which is an M-space, is not an M-space in general. In this example, each C_i is a locally compact M-space, and hence belongs to \mathfrak{C} , while Y does not belong to \mathfrak{C} .

Finally we note that a space belonging to \mathbb{C}^* does not belong to \mathbb{C} in general. This is an immediate consequence of the following result obtained by K. Morita [3]: There is a perfect map $f: X \rightarrow Y$ such that X is a locally compact M-space but Y is not an M-space. In fact, Y belongs to \mathbb{C}^* by Lemma 2.5 but does not belong to \mathbb{C} .

References

- [1] T. Ishii: On closed mappings and M-spaces. I. Proc. Japan Acad., 43, 752-756 (1967).
- [2] K. Morita: Products of normal spaces with metric spaces. Math. Ann., 154, 365-382 (1964).
- [3] —: Some properties of M-spaces. Proc. Japan Acad., 43, 869-872 (1967).
- [4] J. Novák: On the cartesian product of two compact spaces. Fund. Math., 40, 106-112 (1953).