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203. On the Product of M.Spaces. I

By Tadashi ISHII, Mitsuru TSUDA, and Shin-ichi KUNUGI
Utsunomiya University

(Comm. by Kinjir5 KUNU(r, M.J.A., Nov. 12, 1968)

1o Introduction. In the present paper all spaces are assumed to
be Hausdorff. In his previous paper [2], K. Morita has introduced
the notion of M-spaces. A space X is called an M-space if there exists
a normal sequence (Lt i--l, 2, of open coverings of X satisfying
the condition (M) below:

If (K) is a sequence of non-empty subsets of X such that K/
(M) K, K_ St(x0, H) for each i and for some fixed point x0 of X,

then fq K =.
As is easily verified, Condition (M) is equivalent to the condition
(M0) below"

If {x} is a sequence of points of X such that x e St(x0, H) for
(M0) each i and for some fixed point x0 of X, then {x} has an ac-

cumulation point.
Hereafter we use Condition (M0) in place of Condition (M).

As for the product X Y of two M-spaces X and Y, it seems to
be unknown whether X Y is also an M-space or not. We can give
an affirmative answer for this problem in the following cases"

(a) X satisfies the first axiom of countability.
(b) X is locally compact.
( c ) X is paracompact.

The purpose of our papers I and II is to introduce the notion of the
spaces belonging to the class and to prove a more general theorem
(cf. Theorem 1.1 in II) as follows: If a space X belongs to the class, then the product X Y is also an M-space for any M-space Y. We
denote by the class of all spaces X such that there exists a normal
sequence {lt} of open coverings of X satisfying the condition (.)
below:

If {x} is a sequence of points o X such that x e St(x0, H) for
each i and for some fixed point x0 of X, then there exist a sub-

(*)
sequence {x(ln=l, 2, ...}-of {x} which has the compact
closure.

The class contains all M-spaces satisfying one of conditions (a), (b),
and (c), and further the spaces belonging to have the following
properties.

(i) If f:XY is a quasi-perfect map (i.e., a continuous closed



898 T. ISHII, M. TSUDA, and S. KUNUGI [Vol. 44,

surjective map such that f-(y) is countably compact) of a space X
belonging to g onto a normal space Y, then Y belongs to g (cf.
Theorem 2.4).

(ii) If X, i--l, 2, ..., belong to , then the product ]-I X be-

longs to g (cf. Theorem 1.3 in II).
2. The spaces belonging to .
Theorem 2.1. If a space X belongs to , then X is an M-space.
Proof. Since X belongs to g, there exists a normal sequence

{1%} of open coverings of X satisfying Condition (.). Let (x} be a
sequence of points of X such that x e St(x0, 1/) for each i and for
some fixed point x0 of X. We shall prove that (x} has an accumula-
tion point. For this purpose we can assume without loss of generality
that {x} contains a subsequence (x()} consisting of distinct points.
Since X(n) e St(x0, lln) for every n, by Condition (,) there exists a sub-
sequence {x’} of (x()} which has the compact closure. Consequently,
{x’} has an accumulation point. If otherwise, (x’} must be discrete
and closed. Since (x} consists of distinct points, it cannot be compact.
Therefore {1t} satisfies Condition (M0). This completes the proof.

Remark. In the proof of Theorem 2.1, it is sufficient to assume
that the closure of the subsequence (x’} of {x()} is countably compact.

The converse of Theorem 2.1 is not valid in general, as is shown
in Theorem 2.3.

Theorem 2.2. If an M-space X satisfies one of the following con-
ditions, then X belongs to "( a ) X satisfies the first axiom of countability.

(b) X is locally compact.
(c) X is paracompact.
Proof. Since X is an M-space, there exists a normal sequence

{1%} o open coverings of X satisfying Condition (M0). Let {x} be a
sequence of points of X such that x e St(x0, 1) for each i and for
some fixed point x0 o X. Then, by Condition (M0), {x} has an ac-
cumulation point x’.

( ) If X satisfies the first axiom of countability, then {x} con-
rains a subsequence {x()} which converges to x’. Clearly the closure
of {x()} is compact. Thus X belongs to .

(ii) If X is locally compact, then there exists a neighborhood
U(x’) of x’ which has the compact closure. Since U(x’) contains in-
finite number of elements of {x}, we denote them by {x()}. Then
{X(n)} has clearly the compact closure. Thus X belongs to .

(iii) If X is paracompact, any countably compact subset is com-
pact. Since {x} has accumulation points in St(x0, 1) and nowhere
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else, the closure of {x} is countably compact, and hence it is compact.
Thus X belongs to .

Remark. A space X belonging to does not necessarily satisfy
the first axiom of countability, because there is a compact space which
does not satisfy the first axiom of countability. Further a space be-
longing o is not necessarily locally compact, because there is a
metric space which is not locally compact.

Theorem 2.3. Thee exists an M-space which does not belong to, and further there exists a space which belongs to but is not a
paracompact M-space.

To prove Theorem 2.3, we mention two examples of the spaces
satisfying the required properties.

Example 1. (An M-space which does not belong to ). We show
that a countably compact space A, which was constructed by J. Novk
[4], satisfies the required conditions. Let/(N) be the Cech-compacti-
ficatio of the set N of natural numbers. Then by [4] there exist two
subsets P and Q of/(N) such thatPL)Q--fl(N)--N, PfQ-fb and that
Sf P4: and S f Q 4: gi for any countable infinite subset S of /(N).
Let us put A-PuN. Then the subspace A of /(N) is countably
compact, and hence it is an M-space.

Now we shall prove that the space A does not belong to . Let
S be any countable infinite subset of A. Then the set S has no
compact closure in A. If otherwise, then the closure of S in A is
compact, and hence it is compact in/(N), too. But, as the construc-
tion of the sets P and Q shows, the closure of S in/(N) contains a
point of the set Q=fl(N)-A. This is a contradiction. Let (1I} be
any normal sequence of open coverings of A, and let x0 e P. Then
St(x0, 1%)contains infinite points of N for each i, and hence we can
choose a sequence {n} of distinct points of N such that n e St(x0, 11).
As is shown above, the closure of {n} in A is not compact. Thus the
space A does not belong to .

Example 2. (A space X which belongs to but is not a para-
compac M-space). Let X be the space {ala (tg} of ordinals with the
order topology, where/2 is the first uncountable ordinal. Since X is
countably compact and satisfies the first axiom of countability, it
belongs to . But it is not paracompact.

Theorem 2.4. Let f X-Y be a quasi-perfect map. If X be-
longs to and if X or Y is normal, then Y belongs to . If f XY
is. perfect and if Y belongs to , then X belongs to .

The proof of Theorem 2.4 is performed by the similar way as
in the proo of the first part of [3, Theorem 2.2]. For this purpose
we introduce a class * of the spaces. We denote by * the class of
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all spaces X such that there exists a sequence {1i=1, 2,...} of
locally finite closed coverings of X satisfying Condition (.). As or
the spaces belonging to *, the following lemmas are valid.

Lemma 2.5. Let f X-Y be a quasi-perfect map. If X belongs
to *, then Y also belongs to *.

Lemma 2.6. If X belongs to , then X belongs to * and satisfies
the property (C) below:

For any locally finite collection {F} of closed sets of X there
(C) exists a locally finite collection {G} of open sets of X such that

FG for each .
In case X is normal, the converse is true.

Since Lemma 2.5 can be proved by the similar way as in the
proo of [1, Theorem 2.3] and Lemma 2.6 can be proved by the similar
way as in the proof of [3, Theorem 1.1], we omitt the proof.

Proof of Theorem 2.4. If X is normal, so is Y. Further by [3,
Lemma 2.1], if X has Property (C), so has Y. Hence the first part ol-
lows rom Lemmas 2.5 and 2.6. The second part ollows rom the
fact that, if f X-.Y is perfect, then f-(C) is compact or every com-
pact set C o Y. Thus the proo is completed.

By the same way as in the proo o [3, Theorem 3.1], it ollows
rom Theorem 2.4 that, if {AI2 e A} is a locally finite closed covering
o a space X and i each A is a normal space belonging to , then X
is a normal space belonging to . In [3], K. Morita shows by an
example that a space Y which is the union of closed subspaces C,
i=1, 2, each of which is an M-space, is not an M-space in general.
In this example, each C is a locally compact M-space, and hence
belongs to , while Y does not belong to .

Finally we note that a space belonging to * does not belong to
in general. This is an immediate consequence o the following result
obtained by K. Morita [3]: There is a perfect map f:XY such
that X is a locally compact M-space but Y is not an M-space. In act,
Y belongs to * by Lemma 2.5 but does not belong to .
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