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146. On the Structure of Fourier Hyperfunctions®

By Akira KANEKO
University of Tokyo

(Comm. by Ko6saku YosipA, M. J. A., Nov. 18, 1972)

We show below a complete analogue of the following structure
theorem for the temperate distributions: Every element u ¢ S’ can be
expressed in the form u=(Q1—4)" f, where f is a temperate continuous
function. Thus Corollary 1.13 in [3] is improved, and Remark 1.15
there should be cut away. We refer to [3] for the terminology em-
ployed here.

Theorem. For every Fourier hyperfunction w e Q we can find an
elliptic local operator J(D) and an infinitely differentiable function f(x)
of infra~exponential growth satisfying u=J(D)f.

By the word “infra-exponential” we mean the following type of
estimate:

|f@)|<C, exp (|a]), Ye>0, *C.>0.

Note that a continuous function of infra-exponential growth is
“temperate” in the sense of hyperfunction theory. Especially it can
be considered as a Fourier hyperfunction in a standard way.

Now let us say that a continuous function () >0 of one variable
r>0 is infra-linear if it satisfies the estimate

W(r)<er+C,, Ye>0, 3C.>0.
Before the proof of our theorem we prepare

Lemma. Let (1), k=1,2,-.., be a sequence of infra-linear
functions. Then we can find an infra-linear function () and o
sequence of constants Cy, k=1,2, - . ., satisfying
(1) V(1) <A (1) +C.

Proof. Approximating the graphs of () by polygons from
above, and smoothing the corners, we can assume that ,() are mono-
tone increasing, concave and differentiable. Further, replacing ,(7)
by >3k, ¥,(r) if necessary, we can assume that ,(r) <y, (r) and ()
<j(r) for k<.

Now choose a, by the following induction process:

(2) VACAES %,
(3) V(@) —Yrg(ar_y) g_l_.
O — Oy k

*  Partially supported by Fajukai.
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Since ,(7) are infra-linear, this induction really proceeds. Now define
¥(7) by
W(r) = Yy (1), r<ay,
‘I’k("”)'f‘zlj‘;i (\’"](a’j)_\pjﬂ(aj)), U KT <O

Then () is continuous. We see easily from (2), (3) that +(r) is infra-
linear. By the normalization of () made at the beginning, we also
see easily that we can choose C, satisfying (1). q.e.d.

Proof of the theorem. Let V({) be a defining function of the
Fourier transform #(¢) € Q of w(x). V(0 is holomorphic in C"#R™ and
satisfies the estimate

|V©I<Ch,. exp ([C), Ye>0, 3C,.>0,

for 1>|Im c,|2.;t_, i=1,- -, n.

As in the proof of Lemma 1.1 in [3], we can find monotone increasing,
positive valued, continuous functions ¢,(r) oo satisfying

IV©)I<Crexp (Cl/eu(C)),  for 1>[Im cjlz_llc_, i=1, .-,

Put ¢, (r)=7/¢p,(r). Then ,(r) are infra-linear. Applying the above
lemma we can find an infra-linear function () and constants Cj so
that

(4)  |V©I<C,exp (b2, forlzumcfnz%, i=1, - ,m,

holds. In the same way as at the beginning of the proof of the lemma,
we can assume that () is positive valued, concave and differentiable.
Hence we can assume that »/y(r) is monotone increasing to infinity.
In fact, we have
(/) = () =14’ (1) [ (1)

and

Y(r) =1’ (1)],2o=(0) >0,

(W) =1y’ (1) = —ry"(r) >0.
Put ¢(r)=min (7 /y(r),¥ 7). Then we have obtained

(5) |V©ILCrexp (&l/e(Ch),  for 1>|Im lez% j=1, -,

Now, by Lemma 1.2 in [3] we can choose an elliptic local operator
J(D) whose Fourier transform J({) satisfies
(6) [J(©)|=exp (£|/@(LD), for [Im {,|<1, j=1,.--,n.
Put GO=V(©/J(©)?* G is holomorphic in {{eC";0<Im{,<1,
j=1,...,n} and defines a Fourier hyperfunction 7(¢). From (5), (6)
we have

(7)  |GOI<Ciexp (—+[T),  for 1z|1mcj|2710_, i=1,.,m.

Let f(x) be the inverse Fourier transform of 7(£§). Then we have
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u=J(D)*f.
We will show that f is infinitely differentiable and infra-exponential.
In fact, we can calculate the defining function F(x+14y) of f from that
of fF, along the path {(§,+%/k,---,&,=1/k); ;€ R}, in the following
way

0 0
F(x+iy)=sgny,.-- sgnynZal-o-anJ f
12 —o0 SgN Y1 — 88N Yn
(8) -eXp {——i<x~$—%y-o) +%w-o+y~§}

G (g-l—i%o) de,- - -dg,,

where ¢=(oy, - - -, 0,), 0,= =1 presents the sign. The estimate (7) shows
that every derivative of F' (of finite order) converges locally uniformly
when we let ¥,—0. Thus the boundary value f(x) defined by F(2) is in-
finitely differentiable (in fact even in some Gevrey class). Further,
estimating the integral (8), we have

F@I<Cy exp (1 a]).

Since k is arbitrary, we have proved our theorem.
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