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22. Semi.linear Poisson’s Equations

By Yoshio KONISHI®
Department of Mathematics, University of Tokyo

(Comm. by Kdsaku Yosipa, M. J. A., Feb. 12, 1973)

§1. Semi-linear Poisson’s equations. Let S be a separable,
locally compact, non-compact Hausdorff space, and C,(S) be the com-
pletion with respect to the maximum norm of the space of real-valued
continuous functions with compact supports defined on S. Cy(S) is thus
a Banach lattice.” Assume that we are given a ‘“non-negative” con-
traction semi-group {T;},», of class (Cy) in C«S) (see Phillips [11],
Hasegawa [5] and Sato [12]). We shall be concerned with the situation
in which
(1) the infinitesimal generator A of {T'},., admits a densely defined

inverse A~
That is, we suppose that the semi-group {T.},., admits a “potential
operator” V in the sense of Yosida [17] (see also Chapter XIII, 9 of
Yosida [19]):
V=—A"1

Now we introduce a nonlinear operator?® g, in C,(S) associated with
a strictly monotone increasing continuous function g: D(p)=(a, b)—R',
—00<La<0<b< +0oo, such that g0)=0, lim f(r)=—oco0 if a# —oo,
and that liTer},B(1")=+ooif b+ +oo: e

(2) D(B)={ue CyS);u(s) e D(B)  for any se S},
Bw(®)=pu(s),se S, for u e D(B,).
We consider the “semi-linear Poisson’s equation’:
Au—Bu=—f, FeCy(S).

Our theorem of the existence and uniqueness reads:

Theorem. The operator A—p, admits a densely defined inverse
(A—p)™

Remark. Itis shown in Yosida [18] that the semi-group in Cy(R¥)
associated with the N-dimensional Brownian motion admits a potential
operator in his sense even in the recurrent cases, i.e., N=1 or 2 (see
also Sato [13] and Hirsch [6], where one finds studies on the existence
of potential operators associated with spatially homogeneous Markov

*)  Partly supported by Fijukai Foundation.

1) We shall make use of the notation in Banach lattice. See, e.g., Chapter
X1I, 8 of Yosida [19].

2) Throughout the paper the mappings are all single-valued.
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processes on RY). Thus our result can be applied to the concrete semi-
linear Poisson’s equation :

—;-Au—ﬁ(u)z —F

in each RY, N>1.%
§2. Proof of Theorem. We begin with the following.
Lemma. (i) The operator A—B, is “dissipative (s)” in C(S):
(3) t(u—v, (A—Bu—(A—B)v)<0

for all u,v e D(A) N D(B,) and 2>0;

where, by definition,
o(f, 9):1ff§1 ([ S Hegll=llsD, Sy g9eCyS).

In particular, A— B, is “dissipative”:
| Qu—Au+Bu) — (A0 —Av+pw) || = || u—v||
for all u,v e D(A) N D(B,) and i>0.
(ii) The operator A—p, is “dispersive (s)” in C(S):
(4) o((u—v)*, (A—BIu—(A—pBHv)<0
for all u,v e D(A) N D(B,) and 1>0;
where, by definition,
o(f, 9= bienofw) o(f, (9+ RV (=b))), f=0.
ke Co(S), FAlKI=0
In particular, A —B, is “dispersive”:
{(Au— Au+pu) — (v —Av+ B} || = 2| (u—v)* ||
for all u,v e D(A) N D(By) and 2>0.
(iii) Moreover we have the range condition :
(5) RAI—A+B)=C\(S) whenever 21>0.

Thus, by (i) and (iii), 2 —A +p5,)"" exists and a contraction on
Cy(S) for each 1>0. Besides, in view of (ii), each 2AI—A+pg)! is
“order-preserving’:

(6) S<g implies AQAI—A+B)'f<AQAI—A+B)7'g.

Proof of Lemma. It is known that the operator A is dissipative
(s) (see Remark 3 of Hasegawa [5]) and dispersive (s) (Theorem 1 of
Sato [12]):

(u, Au)<0 and o(u*,Au)<0 for wue D(A).
So is the nonlinear operator —f,:
t(U—v, —Bu+pvI<0 and o((u—v)*, —Bu+pw)<0
for u, v € D(B,), since, by 6.2 of Sato [12],
o(f,9)= max  (sgn f(s)g(s) S#0

{seS;1r&)i=s1}
=lg| f=0
and

3) Note that our interest consists in the unboundedness of the domain con-
sidered. Cf. Brezis-Strauss [3] (the Laplacian in R¥ does not satisfy the condition
(III) in §1 of [3]).
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o(f,9)= max g(s) f=0,1r+0

(s€8; 79 =171}
=0 f= 0.
Because «(f, -) and o(f, ), for a fixed f, are both subadditive, we have
(@) and (4). It is easily seen that the dissipativity(s) and the
dispersivity(s) imply dissipativity and dispersivity respectively (cf.
Lemma 1 of Hasegawa [5] and Lemma 4.1 of Sato [12]). Finally we
prove (iii). (One can proceed as in Konishi [9].) We have only to
show (5) with =1 (see, e.g., Lemma 4 of Oharu [10]). Fix an arbitrary
feCyS). We define an everywhere defined monotone non-decreasing
continuous function p/: D(§")=R'->R! by
(e (Al it r>I+PHSD
B(r)=<pr) if r e D(B) and |r+ (M) |<|| [
B+ (—=If1D if rA+PH=SID-
Define the corresponding operator (8/), in Cy(S) by (2) with =p/. Thus
—(B7), is everywhere defined continuous dissipative operator in C,(S).
Accordingly, by Theorem I of Webb [16] (see also Theorem 1 of Barbu
[11), RI—A+(8))=Cy(N), i.e., there exists u ¢ D(A) such that
(7) u—Au+P)u=f.
On the other hand,
[ (w+@Deu—| SID* |
=o((u+ (@~ fID*, w+@EDou—[ 1D
=o((u—I -+ FIN* Au+f—[ FID<O
and, similarly,
|+ (@eu+( SID7(1<0.
Hence
|u(s) + BT (w()) ||| fI for se S.
Therefore u € D(A) N D(B,) and (7) is written as
u—Au+pu=f. Q.E.D.

The following is a nonlinear version of a part of the abelian ergodic
theorems (see, e.g., Lemma 1 in Chapter VIII, 4 and also (2) in Chapter
XIII, 9 of Yosida [19]).

Proposition. Let J be a (nonlinear) dissipative operator in a real
Banach space X

1A — Au) — AL — Av) || = || u—|, for u,v e D(A) and 2>0
with

Rl - )= for 2>0.

Then
(8) R(=0= {7 & % lim 201 - ) 7 =0}

Proof. We denote by .9 the right-hand side of (8). ¥ is closed
since 2(AI —_4)~! are contractions. Set fe R(— /). Note that
R(— AD=R(— AT - D H=RI—-I~-AD™.
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Hence there exists g ¢ X satisfying f=g9g-—-IT—A)g. ABy using the
“nonlinear resolvent equation” (cf., e.g., Lemma 5 of Oharu [10] or
Lemma 1.2 of Crandall-Liggett [4]), we get
2RI =D f
SAU@U =D f—T—=D'gl|+2|T—=ADg|
=2/ =D f—QALl =D Mg +QA—=DUT =AD"
+Ald+ D g

<|f—9—Q=DUT =D 'g||+2[|T—-AD g

=22l —-AD 9|l o
Thus fe M. Therefore R(— A)C M= M. Nextweset fe M. Then

lejgx (f—=2QI - A1)

=lim (= A= D)f) e R(= . Q.E.D.

Proof of the Theorem. By Proposition, in order to prove
R(A —B)=C\(S) we have to show

(9) l;iﬁl AT —A+B) ' f=0 for f e Cy(S).
Note that, for 2>>0 and f € C,(S), we have by (6)

A —A+B) 2T —A+B) ' <21 —-A)' [,

AA—A+B) ' fZA2Ql—A+B) =201 —A) ' f~
(one finds a similar inequality in Konishi [8]).
In particular, we have that

2] —A4B) IS AQAL—A)Y [, 2>0, f e C«(S),

and, therefore, that

12 —A +B) 7 F I 2L —A) 7 f I, 2> 0, f € Cy(S).
Note that the condition (1) is equivalent to:

lim 2 —A4)"'f=0 for fe Cy(S)

210
(cf. Proposition 1 in Chapter XIII, 9 of Yosida [19]). Thus we have
(9). Next we prove that A—p, is an injection:
Suppose that
Au—Bu=Av—pw
for some pair u,v € D(A) N D(B,). Then
t(u—v, fu—Bv)=t(u—v, Au—Av)<0,
from which follows that u=wv. Q.E.D.

Comment. Our Theorem might be expressed also in the following
form.

The semi-group {exp (t(A—pB))}s, admits a “nonlinear potential
operator” V,:
Ve=(—A+5)7";
where {exp (t(A —B))}:»o is the nonlinear order-preserving semi-group
of contractions on D(A)ND(B)CC,(S), generated in the sense of
Theorem I of Crandall-Liggett [4] (see also Theorem B of Konishi [7]):
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-n

exp (HA— ) f=lim (1 _ %A +% ,80> 7

=1im (T~ /weoyn f

t>0, fe D(A)ND(B). For the latter formula (the Lie-Trotter product
formula), see, e.g., Theorem 3.2 of Brezis-Pazy [2]. Cf. the proof of
Proposition (3.22) due to Brezisin Webb [16]. One can prove also that
-1 -1\ n
o a0 stim (1= 24 (18] 5
>0, f e DAY N D).

Further study. We can apply our techniques to obtain a result
similar to our Theorem in the framework of Hilbert space L?. In this
case 8 need not be strictly monotone increasing. The study of this
direction is stimulated by the recent works of Yosida [20] and Sato [14].
We can make corresponding study also in L?(1<p<oo) but not in L*;
Note that the semi-group in L?P(RY) 1<p<oo) associated with the
N-dimensional Brownian motion admits a potential operator in the
sense of Yosida but the corresponding semi-group in L'(R¥) does not
(see Theorem 1.5 of Watanabe [15]).#¥ See also the author’s paper:
Note on potential operators on L? (in preparation).
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