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46. Theory of Tempered Ultrahyperfunctions. 11

By Mitsuo MORIMOTO
Sophia University

(Comm. by Kunihiko KoDAIRA, M. J. A., April 12, 1975)

We continue our study of tempered ultrahyperfunctions and use
the same notations as in our previous note [5]. In this paper, we con-
sider exclusively the 1-dimensional case.

§ 1. Fourier transformation of distributions with properly
convex support. Let K’'=[a, b] be a closed interval in R. We put

. __[bx for >0,
(1) he(@)=sup (at; ¢ e la, b= {07 1OTE 20
We denote by H(R; K’) the space of all C~ functions f on R for which
there exists a constant ¢>0 such that for any integer p>0, exp (hg.(x)
+¢e|2)D? f(x) is bounded in R, where D?=d?/dx?. H(R; K’) is the in-
ductive limit of F'S spaces. The dual space H'(R; K’) of HR; K') is a
space of distributions of exponential growth ([5]).

Proposition 1. Let g be a C* function on R such that 0<p(x)<1,
B@)=1 for =B (resp. x< —B) and p(x)=0 for < —B (resp. x>B),
with some constant B>0. Then f(x) exp (—ix{) € H(R; K’) if and only
if ImZ< —0b (resp. Im &> —a).

Proof. Remark first
(2) le=***|=e"",|DPe**%|=|(?| e*’,  where {=§+iy.
Therefore, we have

—iwe)_ J1C?| exp (b+e+n)x for >0,
eXp (hg (@) +¢l@]) | D7e |_{|CP] exp (a—e-l-:?;)x for £<0,
from which follows the proposition. q.e.d.
We put
H,(R; K)={T ¢ H(R; K'); supp TC[—A, o) for some A >0},
(3) H_,(R;K)={TeH'(R; K'); supp TT(~— o0, A] for some A >0},
Hy(R; K)={T e H(R; K'); supp TC[—A, A] for some A >0}.
These are linear subspaces of H'(R; K’). We put further
H.(R; K)={T e H(R; K') ; supp TC[0, o)},
39 H.(R; K)={T e H(R; K’) ; supp T C(— o0, 0]},
HyR; K)={T e H(R; K') ; supp T={0}}.
The spaces H,.(R; K’), H.(R; K’) and H{(R; K’) are closed subspaces of
the space H'(R; K').

Let T € H(,)(R; K) and supp TC[— A4, o) (resp. T ¢ H/_,(R; K’) and
supp I'C(—o0, AD). We choose a C~ function g such that 0<p(x)<1,
Bx)=1 for x>—A—5 (resp. *<A+0) and B(®)=0 for < —A—25
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(resp. £>A +20) with some 6>0. The function

(4) T© = @) (T, B(x)e=i*%)

is independent of the choice of the function g and is defined for
Ce T(—oo, —b)) (resp. for Le T((—a,0)). T is, by definition, the
Fourier transformation of T'e H{,,(R; K’) or H{_,(R; K'). We will
denote also FT=T. If Te H,(R; K)=H{,,(R; K)NH{_,(R; K), then
4) FTQ)=T)=@r) (T, e

is an entire function of .

For an open set 2 of C, 4,(£2) denotes the space of all holomorphic
functions 4 on 2 for which there exist for any ¢>0 an integer p>0
and a constant C>0 such that
(5) [W(@)I<CA+|e?D  for e C\(C\DQ),,
where (C\2), denotes the e-neighborhood of C\2. By the Liouville
theorem, (A4,(C) is the space of all polynomials. We can show the
following theorem (see Hasumi [1]):

Theorem 1. Let K'=[a,b]. The Fourier transformation defined
by (4) or (4") establishes the following isomorphisms:

(6) G H(R; K)—A(C),
(6) F: H.(R; K)—>A(T((— o0, —)))),
(6”) & H/_.(R; KI)“"J()(T(("'“, oo)))~

Proof. (6) is well known. Suppose T e H.(R; K’). Then by
Theorem 38 of [5], for any ¢>0 there exist an integer » and a conti-
nuous bounded function F' such that
7)) T(x)=D?[exp (bx+ex)F(x)].

Put T,=T—D?[exp (bx+ex)Y (x)F(x)], where Y(x) is the Heaviside Y-
function. We have

T(Q) = @x) YT, px)e™*)

—2(x) ()P j " F() exp (ba+e2) exp (—iaD)dw + Ty

=(2r) "2 (W})? J: F(x) exp (b +e+7x) exp (—izg)dz + To(0).

As T(©) is a polynomial, there exist an integer P, and a constant C;>0
such that
(8) ITQISCA+[c7)  for p<—b—2e.
Hence ¥ (H, (R; K)) C Ay (T'((—o0, —b))). Similarly we can show
F(H_(R; K)C A(T(—a, 0))).

Let ¢ € 9(T(—K’)). There exists a positive number ¢, such that
e H(T(—K,)). Wehave for ne — K, =(—b—¢y, —t+¢,)

(9) Fol) = (2m) 1" LM o(©)et=ede,

If B is the function as in (4) and if —b—¢<p<—0 or —a<yp<—a+¢,
the integral
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(10) B@)Fop(x) = (2r) 2 IR” o(Q)(B(x)e=t=)dL

converges in the topology of H(R; K’). Therefore for T ¢ H.(R; K’)
(resp. T e H . (R; K')), we have

(11) (T, Fp) = f o FTPOAQ)

with —b—e<yp<—0b (resp. with —a<yp<—a+¢). As the Fourier
transformation & : $(T'(—K))—H(R; K’) is a topological isomorphism
(Theorem 4’ of [5]), the Fourier transformation (6’) and (6”") are injective.

We shall prove the Fourier transformation (6’) is surjective. Sup-
pose ¥ € A(T({(—o0, —D))) is given. Fix ¢ e H(T(—K’)) and suppose
pe O(T(—K,)). Because of the Cauchy integral theorem, the integral

(12 [, Ve

is independent of 7 satisfying —b—e,<p<—0. We can define a con-
tinuous linear functional on $(T(—K’)) by assigning (12) to ¢ e H(T
(—=K"). Hence

(13) s, f)=jm VO@NOI  (—b—ey<y<—b)

defines a continuous linear functional S on H(R; K’).

We claim that supp S is contained in [0, c0). In fact, by the
definition, for any ¢>0 there exist an integer p, and a constant C,>0
such that (8) is valid for »=Im{<—b—e. If the support of f is com-
pact and contained in (—oo, —8], >0, then & f is an entire function
and for any integer p there exists a constant C >0 such that

L[| FF@Q)I<Cexp (6y)  for <.
Thus tending y— —oo in (13), we get (S, f)=0. As §>0 is arbitrary,
this shows supp SC[0, o).
By (11) we have

f o FSQOQL=(S, Fe) = j o, HOROL.
Hence, putting 4() =FSE) —(), we have

14 [ 90@0@de=[" ne+ingte+inds=0

for any ¢ € 9(T(—K,)), —b—e<p<—b. Because the restriction of
9(T(—K)) on R, +in=R.(y e —K,, being fixed) forms a dense subspace
of S(R,) and the function &—+,(§ +iy) defines a tempered distribution,
(14) shows (¢ +1ip) =0 as a distribution of & whence v, =FS—=0.
This proves the surjectivity of (6’). We can show similarly the Fourier
transformation (6”) is surjective. q.e.d.

In order to describe the Fourier images of H/,,(R; K'), H,_,(R; K’)
and H{,(R; K’), we introduce some notations. For an open set 2 in
C, Aexp(2) denotes the space of all holomorphic functions  on 2 for
which the following estimate is valid with some constant A>0: for any
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>0, there exist an integer p and a constant C>0 such that

(15) [WOISC A+(|CPDexp (A[ImL)  for Le C\(C\Q).
Theorem 2. Let K'=[a,bl. Then the Fourier transformation F

defined by (4) or (4') establishes the following linear isomorphisms:

( 16 ) 87: H{O)(R; K/)_)Jexp(c)’
(16") F: Hipy(R; K") > Aexy(T((— 00, 1))  and
(16”) F: Hi_ (R ; K> Aexy(T((—a, 00))).

Proof. H{,(R; K’) being the space of distributions with compact
support, (13) is a linear isomorphism by the Paley-Wiener theorem.
Remark that
H, (R; K)={z,T;TeH,(R; K),Ac R} and
Aexp(T(— 00, =0))={e*4Y(§) ; ¥ € A(T((— 00, —b))), A€ R},
where ¢, is the translation: (z,T)(x)=T(x—A). As we have

amn Gz, TN =e"“(ZFT)(Q),
the isomorphism (16’) results from the isomorphism (6’). (16”) can be
similarly shown to be an isomorphism. q.e.d.

§ 2. TFourier transformation of distributions of exponential
growth. Proposition 2. We have the following exact sequences of
linear spaces:

0—H{,(R; K)—H{,,(R; KYH_,(R; K')-H'(R; K')—0

0— HG(I%J ; K') — HL.(R; K’)éH’_(R;K') —>H’(R“; K")—0,
where S € H,(R; K') goes to (S, —S) and

(T,,T)eH,,(R; KNOH,(R; K')
goesto —T +T_.

In fact, by Theorem 3 of [5], we can decompose T ¢ H'(R; K’) in
the form of 7T=—-T7,+T_.

By the restriction mapping we consider .7,,(C) as a subspace of
Aexp(C\T(—K")) and A,(C) as a subspace of A(C\T(—K’)). We define
the quotient spaces
(19) Hy_ (€5 Aurp) = Ausy(C\T(— K| Ay (C),

(19) Hy (g (C; A)=A(C\T(—=K") | ALC).

Then we have the following commutative diagram, each row of which
is exact:

0—Aexp(C) > Aexp (C\T(— K))—Hi (5 (C'; Aoxp)—0

U U
0— A(C) = A(C\T(—K") — Hp_xn(C; A —O0.
Now for (T,,T_)e H,,(R; K'Y®H/_,(R; K') we put
_ _[IFT_(®) for Im{>—a
PO=HT,, IO = {EFT+(C) for Im ¢< —b.
Then by Theorems 1 and 2, the Fourier transformation & : (T, T_)—®
gives a linear isomorphism of
H,,,(R; K)®H/_,(R; K')

(13)

(20)
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onto A, (C\T(—K") and a linear isomorphism of H, (R ; K')®H._(R ; K’)
onto A(C\T(—K’)). Therefore the Fourier transformation & gives
the following commutative diagrams:
0—H/,(R; K)—H,,,(R; KY®OH{_,(R; K') —> H'(R; K') —>0
|
@1 lEF lg i
0_’ Jexp(c) —_—> Jexp(c\ T(_K,)) —_—> H]f'(—K’)(C; L)qexp)—)O
and
0—H{R; K') - H.(R; K)®H_(R; K') —> H'(R; K') —>0
|
@) F E: £
\4
0— J(C) —> JA(C\T(—K")) —> Hi g, (C; A)—>0.
Theorem 3. The Fourier transformation F gives the linear iso-
morphism

(22) F:H(R; K’)—’HIT(—K')(C; u'qexp)
and a topological linear isomorphism
(227 F:H'[R; K)—Hy_x)(C; A

so that the diagrams (21) and (21’) become commutative.

Corollary. The canonical mapping
(23) HIT(--K')(C; uzlo)”"Hﬁ’(—K’)(C; Jexp)

18 a linear isomorphism.

The Fourier transformations & (22) and (22/) can be defined
more concretely: For T e H'(R; K’), we choose T, € H|,,(R; K’) and
T_eH_,(R;K)suchthat T=—T,+7T_.. We define

0(0) € Ao, (C\T(—K")

putting

o) = {EET_(C) for Im > —a

FT,©)  for Img<—b.

The function @ depends on the choice of (T',,7T.). If T=-T,+T_
=—T,4+T., then T,—T,=T_—T_.=SeH{,(R; K'). Therefore the
class [@] of ® modulo A,,,(C) is well defined by T ¢ H(R; K’). By the
definition, we have FT=[d].

Remark. For e A, ,(T(—oco, —b)) (resp. ¥ € Aup(T(—a, 00))),
we put

IO = {O (resp. () for Im¢> —a

—r(©) (resp. 0) for Im ¢< —b.
[¥,] denotes the class of v, modulo A.,(C). Then the mapping +
—[V,] is injective. We will consider by this mapping
Aexp(T(—00, =b) CH(_)(C'5 Aexy)
and
Aexg(T(—a, 00)) CHE(_ 5y (C'5 Aoxp)
By this convention the two definitions of FT for T ¢ H,,(R; K’) or
_,(R; K’) are consistent.
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§ 3. Cohomological representation of tempered ultrahyper-
functions. We shall define an inner product of H%(_x,(C; Aex,) and
H(T(—K"). Let [P]e Hi(_x(C; Aeoxp) and ¢ € H(T(—K')) be given. As
@ belongs to A.,(C\T(—K)), there exists, by the definition, A >0 such
that for any ¢>0 there exist an integer p, and a constant C such that

2@)I<CA+[¢”Dexp (A|ImE)  for (e C\T(—K)).
For the function ¢, there exists >0 such that ¢ e H(T(—K))).
Therefore, the integrals

“f sreexyy 2O PO =f: D& +i(—a+p(E +i(—a+e)ds

~[_o+i—b—ap@+i—b—ods
are defined for o sufficiently small positive number e. They are inde-
pendent of ¢ because of the Cauchy integral formula.

If @ e A, (C), then the integrals (24) are zero by the Cauchy in-
tegral theorem. Hence we may define

(@5) AL py=— 0@

Theorem 4. Suppose T e H'(R; K) and ¢ € $(T(—K")) be given.
Then we have
(26) KIT,op=(T,F¢),
where the left term is defined by (25) and the right term is the canoni-
cal inner product of H'(R; K’) and H(R; K').
In fact, the formula (11) in the proof of Theorem 1 gives (26).
Theorem 5 (Cohomological representation of &' (T(—K’))). The
tnner product (25) gives the linear isomorphism
27 Y (T(—KN=Hy(x1(C; Aoxp) =Hp(_x1(C'; Ab).
The dual Fourier transformation F, defined in [5] coincides with the
above defined Fourier transformation via (27).
In fact, we have by (26) and the definition of &,
IT,0p=(T,Fo)=(F:T, ¢).
The Fourier transformation ¥: H'(R; K')—H%_x,(C; A,) and the dual
Fourier transformation &F,: H(R; K)—$'(T(—K’)) being isomorph-
isms, we get the theorem.

(24)
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