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136. Remarks on the Cesaro Summability of
Divergent Series.

By Tatsuo TAKAHASHI.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. FUJIWARA, M.L.A., Nov. 13, 1933.)

The object of this paper is to prove a converse of Cauchy’s theorem
concerning limit and give alternate proofs of Doetsch’s theorem and
the well-known Cesaro-Tauberian theorem due to Hardy and Landau.

1. Theorem 1. If

) N = (n—1)a,_;, n>1,
then
@) lim a Fagt-eee- +a, -7
oo n
tmplies 71‘1_12 a,=L.

Proof. Since the sequence (na,) is monotone increasing, its limit
exists. If the limit of (na,) is finite, then a,— 0, consequently L must
be 0. In this case the theorem is evident. If L=-=0, the limit of (na,)
can not be finite. Thus we have to discuss the case, where na, tends
to infinity.

Plainly we can suppose that a, is positive for all n. For any
positive number ¢, there is an integer 7, such that

@3) | aatoptta, —L‘<e,

for n=>my. Let p be a fixed positive integer, then

n
n+[?]
for m=>n,, where [x] denotes the integral part of z.
From (8), we have

1) Doetsch: Uber die Cesirosche Summabilitit bei Reihen und eine Erweiterung
des Grenzwertbegriffs bei integrablen Funktionen. Math. Zeit. 11 (1921). See Nikola
Obreschkoff : Uber einige Sitz fir Summierung von divergenten Reihen. Téhoku
Math. Journ. 32 (1930).
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st oo+ a2 ] - .
4) n+[%:| o< n+[%] e+e+(1 n+[%] L
<2e+(1— ).,

[ (R
n
'n+[?]
and from (1), it results
(5) an+q>

n+q
for any positive integer q. Putting (5) into (4), we have

(_n+_1+ ...... +_@) a,,/(’n+?) <2e+(1——n~+[%T)L,

an’

e e e )

where 7,=1+ % e + % —log n, which tends to the Euler’s constant.

If 7 be an arbitrary positive number, then there exists an integer m;
such that ITM[%]—;',,I <z, for n=m.

Thus we have {log (1+l> -77}% < 4e+(l+L>L ,
p P n
for n > Max (ng, 7). Letting n— o, we have
man.{log (1+}—>—7}§4e+lL,
n=o0 p p

Since ¢ and 7 are arbitrary, lima, < —L-T .
e p log (1 + ——)
D

Since p is arbitrary, we have by letting p— ©
(6) lima, <L.

Next, for any positive number ¢, there is an n, such that

PR 7R SRR % E % RS
L_e < Y4 P

n
for n=>p(ny,+1), where p is a fixed positive number =>1. Hence

a1+a2+ ...... +a[_&] a[l]_‘_l_l_ ...... +am
) L-e< L

n n
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Putting (5) into (7), we have

< s(% + %) + {Iog SR (- r[%])}a,, +L<—;— + ;)

< e(l +—1—>+<log L v)an+L(l+i> ,
p n 1_1 p m
P n
for n=>Max (p(n,+1), n;). Letting n— o, we have

n=x

L—e<= +(ogp+7)lima,+L .
P n=x p

Since ¢ and 7 are arbitrary, we have

)

<lima,.
log p n=
Letting p—1, we have
8) L<lima,.
From (7) and (8), we have finally
litg a,=L,

which is the required result.
2. Theorem 1I. Put élay=8’,,. If S,>—k, k being a constant,

then the fact that ian s (C, r) summable (r = 1), implies that 2.:%
s (C, 1) summable.

Proof. Without loss of generality, we can suppose that r=2.
For our purpose, it is sufficient to prove that if

{S1+—S—%§+ ------ + S1+SZ+7; """ + S, }/n—>L,

then

We can suppose that k=0. For otherwise we take S,+k for S..
Then the theorem is evident from Theorem I.
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Theorem 11 If ij;(m,.—(n—l)a,,_l) is (C, r) summable to L,
G20+t yogs to L,

being positive and na,=>—k, then

If we take na,—(n—1)a,_; for a, in Theorem II (a,=0), then we
have Theorem III.

Theorem 1V. The series, which s one-sidedly bounded (C, r)
(r>—1) and (C,r") summable, is (C, r+1) summable.

This theorem is due to Dr. Doetsch.

Proof. If the series is (C, r+1) summable, then the arithmetic
mean of (C,r) partial sum tends to a limit. Therefore the theorem is
valid by Theorem II, where 7 is any number greater than —1.

3. Theorem V. If S:‘.a,, is (C, ) summable and na,>>—Fk, then

oo
Ma, converges.
1

This is the Hardy-Landau’s theorem.
Proof. We can suppose that r is an integer. Let

n
To=3a,,

MO O o TP
Tn 22 Tv ’ Tn =Tn9

..................

n T( r)
TO=3w™,  @=rn, ¢>1),

n
and U,‘,°’=$ (va,— (v—1)a,-y),
n (1)
UP=31a,, up="U,
1 n

..................

n U(r)
Ur=3uw™, wl=—r-, (r>1).
Then we have UP=nT—TP, consequently uP=TL®—7L and in
general T =70 — D |
If ?an is (C, r) summable, then 7 tends to a limit and hence
u*Y tends to zero. Therefore g('nan— n-1a,) is (C,r+1)

summable to zero. Hence by Theorem III, we have
a1+2a2+ """ +na, —0
n

Consequently ?"’" is convergent. Thus the theorem is proved.



