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59. A Relation between the Theories of Fourier
Series and Fourier Transforms.

By Tatsuo KAWATA.
Sendai Technical High School.
(Comm. by M. FUJIWARA, M.LA., July 12, 1940.)

1. Let f(x) be defined in (— o0, ©) and belong to some class
L,(p=1). If there exists a function F(¢) such that

lim r Ft)——L_ rf(x)e"'t’dx ‘dt=0
A>o ) _ ;271' A ’

then F'(t) is called the Fourier transform of f(x) in L, The Titch-
marsh theory states that if f(x)eL, (1 <p=<2), then f(x) has the
Fourier transform F(t) in L, where 1/p+1/p'=1.

Let ¢(x) be a periodic function with period 2R (R >0) and be-
long to L,(—R, R) and consider its Fourier series

~Sor T, an L[ T

o(x) _Em;c,,e R Cn R _g(x)e dx .
It is well known that there exist close analogies between the Fourier
transforms and Fourier series. The Fourier coefficient ¢, corresponds
to the Fourier transform. For example the convergence of >1|c,|*
stands for the integrability of |F(¢)|* in (—o0, ). Thus the
analogy of Hausdorff-Young theorem on Fourier series is Titch-

marsh theorem on Fourier transform which asserts that ﬁ F@) |7dt <<oo,

if1l<pL2P?

In this paper I shall prove theorems which make the analogies of
this type clearer. The case where F'(f) is the Fourier-Stieltjes trans-
form of a probability distribution was discussed recently by the author.?

2. Theorem 1. Suppose that f(x)e L,(— o, ©) (p>1) and has
the Fourier transform F(t) in L, (— o0, ©) for some q(=1). We de-
fine a periodic function ¢(t) with period 2R which concides with F(t)
in (—R, R). If c, i3 the Fourier coefficient of ¢(t), then

@1) DN SNV

where A, is a constant depending only on p and not of f(x) and R.
Theorem 2. Let ¢(t)e Ly (—R, R) and its Fourier series be

Pt)~ D cae B .

n=—co

1) E.C. Titchmarsh, A contribution to the theory of Fourier transforms, Proc.
London Math. Soc., 23 (1924), 279-289.
A. Zygnumed, Trigonometrical series, Warszawa, 1935. p. 316.
2) T. Kawata, The Fourier series of the characteristic function of a probability
distribution, Tohoku Math. Journ. 47 (1940).
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Suppose that
22) Slal<w, @>1).
We define a function F(t) as follows :
F@)=¢t), -R<t<R,
=0 , [t|=R,

and let its Fourier transform be f(x) (which clearly exists in L. since
F(t)e L, (— o, ©)), Then we have

@3 (o pto < 4y B 3 el

where A, is a constant depending only on p and not of F(t) and R.

Theoeem 1 and 2 can be stated in the following form :

Theorem 3. If c, is the Fourier coefficient of anm integrable
perodic function F(t) with period 2R, then the series >)|c, |° converges
f and only if F(t) coincides almost everywhere in (—R, R) with a
Fourier transform of a function f(x) im L, (— oo, o) where p>1.
Further we can choose f(x) such that

@) B3 el <4, |f0re<BR S o,

A,, B, being constants depending only on p.

3. We can prove these theorems reducing to another theorem of
Titchmarsh which is a discrete analogue of a well known theorem on
confugate function.”

Theorem A. (Titchmarsh) Let i |an|? << oo, (p>1) and put

n=—0co0

b= i O

" L
2

which 1s obviously convergent by Holder inequality. Then we have
(3.1) mgwl bm 7 < A,,ngwl a.l?,

A, being a constant depending only on p.
We first prove Theorem 1. We have

R inn,,
=—l—j Fue E du

-R
=1 S T F dul i m. l_sTf(t)e‘““ dt
2R ) _» T V21 ) g

1) Titchmarsh, Reciprocal formulae for series and integrals, Math. Zeits., 25
(1926), 321-347.
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where L i. m. means the limit in the mean with index g,

f(t)dtj ;( +t)u

-R

"~V 2RS

_ 1 * sin (nr+tR)
V?F-st nr|R+t feydt

(=1)" sm7rt (=1)"
VR it Od=

=f(_ "
say, where ¢(z) _f( x )
We divide d, in three parts:

du s

] -n—-1 -n+l
d,,=j + j o i S A A

-n+l J — -n-1

say. We have

oo k+1 s
3.2 I .= $(B)sin tn dt
3.2) 1 k=§+1 S,‘ t+n

& 1

k+1
= 3 ——~S A(2) sin trdt

k=-n+1

ktntL e
"y

oo

B41 (8 sin trr-(k+%—t)

dt

k=-n+1

©o

= (113 /
k-§+1 1 +L1,

k+n+—
2

k+1
say, where a; denotes jk:b(t) sin trdt. We have

3.3 I, t dt—
@8 hl< 3 ol o]
say. Similarly we have
—n—2 pk+l :
- ¢() sin tn
(3.4) Lo kgmsk et
-n—-2
=2y the
E+n+—
2
where
, n—2 bk
(3'5) lI” ZI = —oo (k+’n)2 M

From (3.2) (3.3), (3.4) and (8.5) we have

(t+fn)(k+n+%)

b
a1 (k+n)’
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d'n: 2 —ak—+Ir,z,1+I1,¢,2+In,8+2an—l_2an ’

k=—oc0 1
Etnt+l
"y
(3.6) S ldalr<4, 3| S — % - i
n= i L ket

+4, n-;i:—:w ( k-2+l (kf;-kn)2 )p

4,3 (2 (o) e 3 sl + 4, 3 [l

The first term of the right hand side of (8.6) does not exceed, by
Theorem A,

BT 4,3 al< A,,n;i_}w“::lvl(t) sin tr dtl"

[l n+1 C oo
<4, 5 [Too ra=a,{" o Pat=a,-&[ | f) at.
The last term is evidently

(39) < 4,E[ |fe)lrat.
Also

eo

(3.9) 2 | L.s?= >

n=—c0

-n+l :
S ¢(t) sin tx dt »
-n-1 t+n

< 3 ([Tworae)'< 3 [ Tote pae

<2r( | f0)Pdt.

Next we treat the second and third terms of the right hand side
of (8.6). We have

nim( la-gn (k -l:-kfn)2 ) = niw( %1 b:;,,_zn ) 1:

Now {l,} is any sequence of positive numbers. By Hélder’s inequality,
we have

) oo

S bee L Sy,

n=~0 m=1 m2 m=1 M* n=—oo

o

S LSS mr

m—l m

<4 3w S s,

N=—00

oo b -1
where 1/p+1/g=1. If we take l,,=< Elﬁ) , then we get

m=
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oo oo bm—n o o b‘m—n
S(E e )sa( 5 (50)) Swr.
Thus we get
S (S <a, S0
n="w\ m=1 M2 e
Hence the second term does not exceed
@10) 4, 3 <A, | g0 Pdt=4,-R |f0 Pat.

The similar inequality holds for the third term.
Above estimations and (3.6) show

(3.11) 3 1P < AR[ |0 Pt

which is equivalent to (2.1).
4. The proof of Theorem 2 can be done by the similar method.

— =~_:l~__ 2t J4 — ixt
@.1) f(—=) Vz”s F(t)e=dt= /27J o(t)edt

which is, by putting w=%,

V2R & »sintr _V2R
P NI e

say. Now let k<<t <Fk+1 and write as

(4.2) D(?),

D)= Z (=D —— sin ér _, i + —Zk_zq_(_l)—k—lc“k_l_s_ip__tn_

n=—c0 n+t n=—k+l m=—co t—k—1

% sin tr

+ep(—1)r=—— %
=D+ Lot I st 14,
say. We have
k—t+1
I =sintr >, 1————1——+smt1r g+( 1)"c, 1
" kernt " (t+n)(k+’n+~2—>

=SI¢:+S;¢:



260 T. KAWATA. [Vol. 16,

say.
1
. *2 (=1)% . —k-2 k_t+—2“
I, ,=sintr 2_ —_—;—+smtn Z_} (—1)"c, 1
knt (t+'n)(k+n+—2—)
= Tk+ TI: ’

say. Then we have

D(t)=sin tz i =1 4 inta { (=1)*e_py + (= 1)*es }

n=—0 k+n+—1‘ t'—'k_l t—k
2
+Si+T;.
Thus we have
k+1 £ 1\~
[Toora<a, 33 -E0 e P tios
k " k+n+§

+A,| S|P+ A, | Te .

Summing up with respect to k¥ from —o to o, we have

[Ip0rat<a, s | 5 S g, 35 ol
e i k+n+—2- e

+4, kioo { 'n-;i;c+l (Il jjb 'l’ll,)2 }p +4, kiw { ’:‘2:: _(-’;[%L.)?}p.

The first, third and fourth terms on the right do not exceed A,,kit} Tk
which is got as in the estimations of terms in (3.6). (4.1) and (4.2) show

["1f@ 1rde < 4B DOty Pt

< AR S o, ]7.

5. We show here that Titchmarsh theorem on Fourier transform
is an immediate consequence of Hausdorff-Young theorem if Theorem 1
is used. The original proof of Titchmarsh is also to reduce the theorem
to Fourier series theorem and his proof is more direct than ours. But
our reduction is also of some interest since it clarifies the relation
between two theorems.

Theorem B. Let f(x)€L, (—», ), 1<p<2 and its Fourier
transform be F(t). We have

60 ([1rora)r<a(if@ra)s, (L+l=1).

Let ¢(t) be a periodic function with period 2R and coincide with
F(t) in (—R, R). Then Hausdorff-Young theorem states
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1 0

52) (5| Ip0race< 4,0 35 e 7,

where ¢, represents the Fourier coefficient of ¢(f). A, depends only
on p and not of R. From this we have

(["Lre pa)e < ([t e

< AET( S |7,
which does not exceed by Theorem 1

A,,R%( 1

ot | @ Paz)r = ([ | Pas)7

that is
([rera)e< a,([ 116 ra)>.

Letting R— oo, we get the result.



