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Abstract

We address the study of some curvature equations for distinguished sub-
manifolds in para-Kähler geometry. We first observe that a para-complex
submanifold of a para-Kähler manifold is minimal. Next we describe the ex-
trinsic geometry of Lagrangian submanifolds in the para-complex Euclidean
space Dn and discuss a number of examples, such as graphs and normal
bundles. We also characterize those Lagrangian surfaces of D2 which are
minimal and have indefinite metric. Finally we describe those Lagrangian
self-similar solutions of the Mean Curvature Flow (with respect to the neu-
tral metric of Dn) which are SO(n)-equivariant.

Introduction

Symplectic manifolds enjoy a distinguished class of submanifolds, namely
Lagrangian submanifolds. They are defined as those submanifolds of maximal
dimension (half the dimension of the ambient space) such that the symplectic
form vanish on it. In the Kähler case, it is interesting to study the metric proper-
ties of Lagrangian submanifolds. In particular, Lagrangian submanifolds which
are in addition minimal, i.e., critical points of the volume functional attached to the
metric, enjoy interesting properties. For example, in the complex Euclidean space
Cn (or more generally in a Calabi-Yau manifold), a locally defined angle function,
the Lagrangian angle, is attached to any Lagrangian submanifold, and minimal
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ones are characterized by the constancy of their Lagrangian angle. Recently, the
study of Lagrangian submanifolds in pseudo-Riemannian Kähler manifolds has
been addressed (see [An2],[An3]).

Para-complex geometry, an alternative to complex geometry, is the study of
manifolds M endowed with a (1, 1)-tensor J satisfying J2 = Id (instead of the
usual relation J2 = −Id characterizing complex geometry), satisfying in addi-

tion the rank condition dim(Ker(J − Id)) = dim(Ker(J + Id)) =
1

2
dim M. The

model space of para-complex geometry is the Cartesian product Dn, where D

is the module of para-complex numbers (see next section for the precise defini-
tion). Using the identification Dn ≃ R2n ≃ T∗R, we may also consider a natural
symplectic structure ω on Dn. The pair (J, ω) then defines a pseudo-riemannian
metric by the relation 〈·, ·〉 := ω(·, J·), which happens to have neutral signature
and makes the para-complex structure J compatible in a suitable sense (see next
section for more detail).

This paper is devoted to the study of two classes of submanifolds that appear
naturally in para-Kähler geometry, namely para-complex and Lagrangian sub-
manifolds. We first prove that para-complex submanifolds are minimal (like com-
plex submanifolds in Kähler geometry), but unstable (unlike complex submani-
folds). Next, we describe the extrinsic geometry of Lagrangian submanifolds and
define their Lagrangian angle, whose constancy is equivalent to minimality (like
in the Kähler case). This is related to the fact, observed in [Me] (see also [HL2]),
that minimal Lagrangian submanifolds of Dn enjoy a kind of “Lagrangian cali-
bration” and are therefore extremizers of the volume in their Lagrangian isotopy
class (but not in their whole isotopy class). Next, we discuss a number of exam-
ples of Lagrangian submanifolds, such as minimal Lagrangian graphs, minimal
normal bundles. We also characterize Lagrangian surfaces of D2 which are min-
imal and have indefinite metric. Finally we describe the Lagrangian self-similar
solutions of the Mean Curvature Flow which are SO(n)-equivariant.

The authors wish to thank the referee for her/his numerous remarks which
significantly improved the paper.

1 Preliminaries

1.1 The space Dn

The set D of para-complex (or split-complex, or double) numbers is the two-dimen-
sional real vector space R2 endowed with the commutative algebra structure
whose product rule is given by

(x, y)(x′, y′) = (xx′ + yy′, xy′ + x′y).

The number (0, 1), whose square is (1, 0) and not (−1, 0), will be denoted by τ.
It is convenient to use the following notation: (x, y) ≃ z = x + τy. In particular,
one has the same conjugation operator than in C:

x + τy = x − τy.
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Since zz̄ = x2 − y2, it is only natural to introduce the Minkowski metric
〈·, ·〉 = dx2 − dy2, so that the squared norm 〈z, z〉 of z is zz̄.

We also introduce the polar coordinates as follows: the radius of z ∈ D is
r := |〈z, z〉|1/2 . If z is non-null, it belongs to one of the two connected compo-
nents of one of the two hyperbolas x2 − y2 = ±r2. Its argument arg z is defined to
be the unique real number θ such that

z = ±τqreτθ = ±τqr(cosh(θ) + τ sinh(θ)), q ∈ {0, 1}.

Next we define the “para-Cauchy-Riemann” operators on D by

∂

∂z
:=

1

2

(

∂

∂x
+ τ

∂

∂y

)

∂

∂z̄
:=

1

2

(

∂

∂x
− τ

∂

∂y

)

.

A map f defined on a domain of D is said to be para-holomorphic if it satisfies
∂ f

∂z̄
= 0. Observe that this is a hyperbolic equation, so a para-holomorphic map

need not to be analytic, and may be merely continuously differentiable.

On the Cartesian n-product Dn with para-complex coordinates (z1, . . . , zn),
we define the canonical para-Kähler structure (J, 〈·, ·〉) by

J(z1, . . . , zn) := (τz1, . . . , τzn)

and

〈·, ·〉 :=
n

∑
j=1

dzjdz̄j =
n

∑
j=1

dx2
j − dy2

j .

We also introduce the “para-Hermitian” form:

〈〈·, ·〉〉 :=
n

∑
j=1

dzj ⊗ dz̄j =
n

∑
j=1

(dx2
j − dy2

j )− τ
n

∑
j=1

dxj ∧ dyj.

In other words we recover 〈·, ·〉 by taking the real part of 〈〈·, ·〉〉. On the other
hand, its imaginary part is (up to sign) the canonical symplectic form ω of T∗Rn

under the natural identification Dn ≃ T∗Rn. Finally, the three structures (metric,
para-complex and symplectic) are related by the formula: ω := 〈·, J·〉.

1.2 Para-complex and para-Kähler manifolds

Let M be a differentiable manifold. An almost para-complex structure on M
is a (1, 1)-tensor J satisfying J2 = Id and such that the two eigendistributions
Ker(J ∓ Id) have the same rank. On the other hand, a para-complex structure is
an atlas on M whose transition maps are local bi-para-holomorphic diffeomor-
phisms of Dn. Exactly as in the complex case, a para-complex atlas defines an
almost-complex structure J by the formula JX = dϕ−1

(

J̃dϕ(X)
)

, where we de-

noted by J̃ the para-complex structure of Dn and by ϕ a local chart on M. The
question of under which condition the converse is true, hence the para-complex
version of Newlander-Nirenberg theorem, is the content of the following
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Theorem 1. The almost para-complex structure J comes from a para-complex structure
if and only if its para-Nijenhuis tensor N J , defined by

N J(X, Y) := [X, Y] + [JX, JY]− J[JX, Y] − J[X, JY]

vanishes.

The proof of this theorem, a consequence of Frobenius theorem, is much
simplier than in the complex case. For the sake of completeness we state it in
the Appendix.

Unlike the case of complex manifolds, a para-complex manifold is not
necessarily orientable: for example, it is easy to equip the Klein bottle with a
para-complex structure: let M = R2/ ∼ where ∼ is the equivalence relation
defined by (u, v) ∼ (u + 1, v) ∼ (1 − u, v + 1). Then the para-complex structure
defined on R2 by J∂u = ∂u and J∂v = −∂v descends to M.

A pair (J, g), where J is para-complex structure, and g a compatible pseudo-
Riemannian metric, is said to be a para-Kähler structure on M if the alternating
2-from ω := g(J·, ·) is symplectic, i.e. it is closed (the non-degeneracy of ω fol-
lows directly from that of g). The simplest, non-flat example of such a para-
Kähler manifold may be constructed in an analogous way to the complex pro-
jective space: DPn is the set of two-dimensional subspaces of Dn+1 which are
J-stable and have non-degenerate (hence indefinite) metric. Alternatively, DPn

is the quotient of the quadric Q := {〈·, ·〉 = 1} of Dn+1 by the Hopf action
z 7→ z · eτt. In a para-Kähler manifold, exactly as in the Kähler case, the para-
complex structure J is parallel with respect to the Levi-Civita connection of the
metric. This fact will be useful in the next section.

2 Distinguished submanifolds in para-complex geometry

2.1 Para-complex submanifolds

It is well known that complex submanifolds in Cn (or more generally in Kähler
manifolds) are examples of not only minimal, but even calibrated submanifolds.
In the para-complex case, some care must be taken to the definition of a para-
complex submanifold: given a submanifold S of a para-complex manifold (M, J),
the assumption that the tangent bundle of S is stable for J is not sufficient, since
the restriction of the eigenspaces Ker(J ∓ Id) may not have the same rank. Hence
a submanifold S of (M, J) will be called para-complex if the restriction of J to TS
is still an almost para-complex structure, i.e. TS is J-stable and Ker(J ∓ Id) ∩ TS
have the same rank. It turns out that if M is in addition para-Kähler, its para-
complex submanifolds are minimal, but fail to be calibrated, being always unsta-
ble with respect to the volume form.

Theorem 2. Let (M, J, g, ω) a para-Kähler manifold and S a non-degenerate submani-
fold of M which is para-complex. Then S is minimal but unstable.

Proof. Given a tangent vector field X, JX is also tangent to S . Moreover, since J is
parallel with respect to the Levi-Civita connection D, we have DY JX = JDYX. On
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the other hand, since the tangent bundle is J-invariant, so are the normal bundle.
It follows that

(DY JX)⊥ = (JDYX)⊥ = J(DYX)⊥ ,

i.e. h(JX, Y) = Jh(X, Y), where h denotes the second fundamental form of S ,
i.e. the two-tensor, valued in the normal bundle, defined by h(X, Y) = (DXY)⊥.
Next, an easy modification of the famous Gram-Schmidt process shows that there
exists an orthonormal frame (e1, . . . , e2k) on S such that e2i = Je2i−1,
∀ i, 1 ≤ i ≤ k (which proves in particular that the dimension of S is even). It
follows that g(e2i, e2i) = −g(e2i−1, e2i−1). Setting ǫi := g(ei, ei), we deduce:

2k~H =
2k

∑
i=1

ǫih(ei, ei) =
k

∑
i=1

ǫ2i−1h(e2i−1, e2i−1) + ǫ2ih(e2i, e2i)

=
k

∑
i=1

ǫ2i−1

(

h(e2i−1, e2i−1) + h(Je2i−1, Je2i−1)
)

=
k

∑
i=1

ǫ2i−1

(

h(e2i−1, e2i−1)− J2h(e2i−1, e2i−1)
)

= 0.

The unstability of S comes from the fact that its induced metric is indefinite: if
X is not a null tangent vector, JX is tangent as well and g(JX, JX) = −g(X, X).
It has been proved in [An2] that a minimal submanifold with indefinite induced
metric is always unstable.

2.2 Lagrangian submanifolds in Dn

Lemma 1. Let L be a Lagrangian submanifold of Dn and (X1, . . . , Xn) a local tangent
frame along L. Then the para-complex number detD(X1, . . . , Xn) is non null if and only
if the induced metric on L is non-degenerate. Moreover, if (X1, . . . , Xn) is orthonormal
(so in particular the induced metric on L is non-degenerate), then detD(X1, . . . , Xn) is
unit, i.e.

∣

∣

∣

〈

detD(X1, . . . , Xn), detD(X1, . . . , Xn)
〉

∣

∣

∣
= 1.

Finally, if the metric on L is non-degenerate, the argument of the para-complex number
detD(X1, . . . , Xn) does not depend on the choice of the frame (X1, . . . , Xn), but only on
the submanifold L.

This lemma allows us to give a satisfactory definition to the concept of
Lagrangian angle:

Definition 1. Let L be a Lagrangian submanifold of Dn with non-degenerate induced
metric and (e1, · · · , en) a local orthonormal tangent frame along L. Then the para-
complex number Ω := detD(e1, . . . , en) is called para-holomorphic volume of L.
The argument β of Ω is called Lagrangian angle of L.

Proof of Lemma 1. We denote by (e1, . . . , en) the canonical para-Hermitian basis of
(Dn, 〈〈·, ·〉〉). Observe first that given any two vectors X and Y of Dn, we have

X =
n

∑
i=1

〈〈X, ei〉〉ei
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and

〈〈X, Y〉〉 =
n

∑
k=1

〈〈X, ek〉〉〈〈ek , Y〉〉 =
n

∑
k=1

〈〈X, ek〉〉〈〈Y, ek〉〉.

Hence, setting M := [〈〈Xi , ej〉〉]1≤i,j≤n, the coefficients of the first fundamental
form (induced metric) are

gij := 〈Xi, Xj〉

= 〈〈Xi , Xj〉〉

=
n

∑
k=1

〈〈Xi , ek〉〉〈〈Xj , ek〉〉

(we have used the Lagrangian assumption to get the second equality). It follows
that [gij]1≤i,j≤n = MM∗, where M∗ denotes the conjugate matrix of M. It follows
that

detR [gij]1≤i,j≤n = detD MdetD M∗ = detD MdetD M = 〈detD M, detD M〉,

hence the induced metric is degenerate if and only if the para-complex number
detD M is null. Moreover, if the frame (X1, . . . , Xn) is orthonormal, the matrix
[gij]1≤i,j≤n is orthogonal, so that

〈detD M, detD M〉 = detR [gij]1≤i,j≤n = ±1.

In order to conclude the proof it suffices to observe that if (Y1, . . . , Yn) is another
local frame along L, with Yi = ∑

n
j=1 aijXi, we have

detD(Y1, . . . , Yn) = detD [aij]1≤i,j≤ndetD(X1, . . . , Xn).

Since the coefficients aij are real, the two para-complex determinants above have
the same argument.

The proof of the next lemma can be found in [An2]:

Lemma 2. Let L be a non-degenerate, Lagrangian submanifold of Dn. Denote by D the
Levi-Civita connection of the induced metric on L. Then the

T(X, Y, Z) := 〈DXY, JZ〉

is tensorial and tri-symmetric, i.e.

T(X, Y, Z) = T(Y, X, Z) = T(X, Z, Y).

Theorem 3. Let L be a Lagrangian submanifold of Dn with non-degenerate induced

metric. Then the Lagrangian angle β and the mean curvature vector ~H of L are related
by the formula

n~H = −J∇β,

where ∇ denotes the gradient operator on L with respect to the induced metric.
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Proof. Let (e1, . . . , en) a local orthonormal frame of L. The Lagrangian assumption
implies that it is also a para-Hermitian frame, i.e.

[〈〈ej, ek〉〉]1≤j,k≤n = diag(ǫ1 , . . . , ǫn),

where ǫj = ±1. In particular, given any vector X of Dn, we have

X =
n

∑
j=1

ǫj〈〈X, ej〉〉ej.

It is sufficient to prove that 〈n~H, Jej〉 = 〈∇β, ej〉, i.e. 〈n~H, Jej〉 = dβ(ej). Differen-

tiating the identity eτβ = Ω(e1, . . . , en) with respect to the vector ej, we have

τdβ(ej)e
τβ =

n

∑
k=1

Ω(e1, . . . , Dej
ek, . . . , en)

=
n

∑
k=1

Ω

(

e1, . . . ,
n

∑
l=1

〈〈el , Dej
ek〉〉el , . . . , en

)

=
n

∑
k=1

Ω(e1, . . . , ǫk〈〈ek, Dej
ek〉〉ek, . . . , en)

=
n

∑
k=1

ǫk〈〈ek, Dej
ek〉〉e

τβ,

hence

τdβ(ej) =
n

∑
k=1

ǫk〈〈ek, Dej
ek〉〉.

Recalling that 〈〈·, ·〉〉 = 〈·, ·〉 − τω = 〈·, ·〉 − τ〈·, J·〉, we have

〈〈ek, Dej
ek〉〉 = 〈ek, Dej

ek〉 − τ〈ek, JDej
ek〉.

Differentiating the relation 〈ek, ek〉 = ǫk in the direction ej yields 〈ek, Dej
ek〉 = 0,

so that, taking into account that Jej is a normal vector to L,

〈〈ek, Dej
ek〉〉 = τ〈Jek, Dej

ek〉 = τT(ej, ek, ek).

By Lemma 2, we deduce that

dβ(ej) =
n

∑
k=1

ǫk〈Jej, h(ek, ek)〉 = 〈Jej, n~H〉 = −〈ej, nJ~H〉,

which, by the very definition of ∇, is equivalent to the claimed formula.

Corollary 1. Let L be a Lagrangian submanifold of Dn with non-degenerate induced
metric. Then it is minimal if and only if it has constant Lagrangian angle.

Remark 1. The isometry eτϕ0 , ϕ0 ∈ R, transforms a Lagrangian submanifold with
para-holomorphic volume Ω and Lagrangian angle β into a Lagrangian submanifold with
para-holomorphic volume Ωeτϕ0 and Lagrangian angle β + nϕ0. Hence, in the study of
minimal Lagrangian submanifolds, there is no loss of generality in studying Lagrangian
submanifolds with vanishing Lagrangian angle, or equivalently, with para-holomorphic
volume satisfying Re Ω = 0 or Im Ω = 0 (unlike the Kähler or pseudo-Kähler case, these
two equations are not equivalent).
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Remark 2. It was proved in [Me] (see also [HL2]) that a minimal Lagrangian subman-
ifold with definite induced metric is a volume extremizer in its Lagrangian homology
class.

3 Minimal Lagrangian submanifolds in Dn

3.1 A local characterization of minimal Lagrangian surfaces with indefinite

metric

Theorem 4. Let L be a minimal Lagrangian surface of D2 with indefinite induced
metric. Then L is the product γ1 × Jγ2 ⊂ P ⊕ JP, where γ1 and γ2 are two planar
curves contained in a non-Lagrangian (and therefore non-complex) null plane P.

Proof. Since the induced metric is assumed to be indefinite, there exist local null
coordinates (u, v) on L, i.e. such that the induced metric takes the form F(u, v)dudv
(see [We], [An2]). It follows that, given a local parametrization of L, the mean

curvature vector ~H is given by the formula ∂uv f (see [Ch], [An2]). Hence the
minimality assumption amounts to the partial differential equation ∂uv f = 0.
Therefore, the local parametrization f takes the form f (u, v) = γ1(u) + γ̃2(v),
where γ1, γ̃2 are two null curves of D2 (i.e., 〈γ′

1, γ′
1〉 and 〈γ̃′

2, γ̃′
2〉 vanish), and

〈γ′
1(u), γ̃′

2(v)〉 6= 0, ∀ (u, v) ∈ I1 × I2.

On the other hand the Lagrangian assumption is:

ω(γ′
1(u), γ̃′

2(v)) = 0, ∀ (u, v) ∈ I1 × I2.

The remainder of proof relies on the analysis of the dimension of the two linear
spaces P1 := Span{γ′

1(u), u ∈ I1} and P2 := Span{γ̃′
2(v), v ∈ I2}. We first observe

that dim P1, dim P2 ≥ 1 and that the case dim P1 = dim P2 = 1 corresponds to the
trivial case of L being planar. Since the rôles of γ1 and γ̃2 are symmetric, we may
assume without loss of generality, and we do so, that dim P1 > 1.

Next, denoting by Pω
i , i = 1, 2, the symplectic orthogonal of Pi, the Lagrangian

assumption is equivalent to P2 ⊂ Pω
1 and P1 ⊂ Pω

2 , so dim P2 ≤ dim Pω
1 and

dim P1 ≤ dim Pω
2 . By the non-degeneracy of ω, it follows that dim P1 ≤ dim Pω

2 =
4 − dim P2 ≤ 3. We claim that in fact dim P1 = 2. To see this, assume by contra-
diction that dim P1 = 3. It follows that dim P2 ≤ dim Pω

1 = 1, so the curve γ̃2

is a straight line, which may be parametrized as follows: γ̃2(v) = e0v, where e0

is a null vector of D2. Then γ′
1 is contained in the intersection of the light cone

Q4
2,0 with the hyperplane {e0}

ω. Moreover, e0 /∈ Ker(J ∓ Id). Hence, after a pos-

sible linear, para-complex, isometry of D2 we may assume that e0 = (1, 0, 0,±1).

Then an easy computation shows that Q4
2,0 ∩ {e0}

ω = Π1 ∪ Π2, where Π1 and Π2

are two null planes. Moreover, one of these planes, say Π2, is contained in the
orthogonal {e0}

⊥ of e0 with respect to the metric of D2. By the non-degeneracy
assumption,

〈γ′
1(u), γ̃′

2(v)〉 = v〈γ′
1(u), e0〉 6= 0,

we deduce that γ′
1 ∈ Π1, which implies that dim P1 ≤ 2, a contradiction.
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To conclude, observe that, γ̃2 ∈ P2 ⊂ Pω
1 = JP1. Hence we just need to set

P := P1 and γ2 := Jγ̃2, to get that γ1, γ2 ⊂ P, so that L takes the required expres-
sion.

3.2 Minimal graphs

In this section, we look at the minimal Lagrangian graph equation. It is well
known that the graph of a closed one-form of a manifold M is a Lagrangian sub-
manifold of T∗M. In the case of M being an open subset U of Rn, it is equivalent,
locally (or globally if U is simply connected), to look at the graph of the gradient
of a map u ∈ C2(U), a Lagrangian in T∗U ⊂ T∗Rn ≃ Dn. In order to write
the minimality condition with respect to the para-Kähler metric, we consider the
immersion

F : U −→ Dn

(x1, . . . , xn) 7−→
(

x1 + τ ∂u
∂x1

, . . . , xn + τ ∂u
∂xn

)

.

Since we have

∂F

∂xi
=

(

τ
∂2u

∂xi∂x1
, . . . , 1+ τ

∂2u

∂x2
i

, . . . , τ
∂2u

∂xi∂xn

)

,

Hence, using Theorem 1, we obtain β = arg detD(Id + Hess(u)), where Hess
denotes the matrix made of the second derivatives of u. We note that the PDE
arg detD (Id + Hess(u)) = const may be elliptic or hyperbolic, depending on the
causal character of the para-complex number detD(Id + Hess(u)).1

In the case n = 2, this equation takes a remarkable form:

arg (1 + detR (Hess(u) + τ∆u) = const.

If the para-complex number 1+ detR (Hess(u)+ τ∆u) has positive squared norm,
then the induced metric on the Lagrangian F(U) is definite. In this case, the equa-
tion arg (1 + detR (Hess(u) + τ∆u)) = 0 is equivalent, according to Remark 1, to
the Laplace equation ∆u = 0. If 1 + detR (Hess(u) + τ∆u) has negative squared
norm, the induced metric on F(U) is indefinite, and according to Remark 1, the
equation amounts to the hyperbolic Monge-Ampère equation detR (Hess(u)) =
−1.

3.3 Minimal Equivariant Lagrangian submanifolds in Dn

In this section we describe explicitly some solutions of the minimal equation
which are equivariant. We define the following immersions

F : I × Sn−1 −→ Dn

(s, σ) 7−→ γ(s)ι(σ),

1The corresponding equation is elliptic in the Kähler case ([HL1]) and hyperbolic in the
pseudo-Kähler case ([An2, An3]).
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where γ ⊂ D2 is a regular, planar curve with γ 6= 0, and ι : Sn−1 −→ Rn

denotes the canonical embedding of the sphere. In the following, we shall make
the following abuse of notation: ι(σ) = σ. The image of such an immersion is
a Lagrangian submanifold of Dn which is invariant under the action of SO(n)
given by x + τy 7→ Ax + τAy, where x, y ∈ Rn and A ∈ SO(n). It is proved in
[Sa] that if n ≥ 3, any Lagrangian submanifold which is invariant by this action
may be locally parametrized by such an immersion. This is, however, not true if
n = 2 (cf [Sa]).

We now proceed to calculate the para-holomorphic volume of X. Given

σ ∈ Sn−1, we introduce a local orthonormal frame (e1, . . . , en−1) in a neighbour-
hood of σ, which is parallel at σ. It follows that the vectors

dF(∂s) = Fs = γ̇(s)σ

and
dF(ei) = γ(s)dι(ei) = γ(s)ei , 1 ≤ i ≤ n − 1

span the tangent plane (here and in the following, the dot ˙ denotes derivative
with respect to the variable s). So it is easily seen that the induced metric is de-
generate if and only if γ is null or takes value in the light cone 〈z, z〉 = 0 and
that Ω is, up to a real constant, γ̇(s)γn−1(s). In particular, the induced metric
is definite or Lorentzian, depending on whether γ and γ̇ have the same causal
character, and the immersion F is minimal if and only if arg(γ̇γn−1) is constant.
According to Remark 1, it is sufficient to look at the two cases Re γ̇γn−1 = 0 and
Im γ̇γn−1 = 0. Integrating these equations, we obtain the algebraic equations
Re γn = C and Im γn = C, where C is a real constant. Since the transformation
z 7→ Jz is an anti-isometry of Dn, it preserves minimality. Accordingly, if γ is
a solution of one of these two equations, so is τγ. We observe that in the even
case, the solutions are invariant by the axial symmetry z 7→ τz, while in the odd
case, this symmetry exchanges solutions of Re γn = C and Im γn = C respectively.
We observe that the minimality condition makes sense only if the curvature ten-
sor is defined, i.e. if the induced metric is non-degenerate. Hence, in the next
subsections, we take a closer look to the solutions and point out the existence of
”singular points”, i.e. where the induced metric becomes degenerate.

The case n = 2

Here the solutions of the first equation corresponds to round circles x2 + y2 = C.
These circles cross four times the light cone x2 = y2 (i.e. the symmetry lines of
z 7→ ±τz). The resulting surface has equation

(x1 − y2)
2 + (y1 + x2)

2 = (x1 + y2)
2 + (x2 − y1)

2 = C.

It is a compact torus with four closed lines of null points and with indefinite
metric elsewhere.

The solutions of the second equation are the hyperbolas2 2xy = C. These
curves cross once the light cone x2 = y2. The resulting surface is a cylinder with
a circle of null points and with definite metric elsewhere.

2These curves do not have constant curvature with respect to the metric dx2 − dy2.



Lagrangian submanifolds in para-complex Euclidean space 431

The case n = 3

The first equation takes the form x3 + 3xy2 = C. The corresponding curve cross

twice the light cone x2 = y2. The resulting surface is a S2 × R with two spheres

S2 of null points bounding a cylinder with indefinite metric and two unbounded
annuli with definite metric. The second equation 3x2y + y3 = C is equivalent to
the first one.

The general case

Using polar coordinates γ = ±ταreτϕ (with α ∈ {0, 1}, r > 0 and ϕ ∈ R), we get

γn = ±τnαrneτnϕ = ±τnα(rn cosh(nϕ) + τrn sinh(nϕ)).

We therefore obtain the general solutions

r =

(

C

cosh(nϕ)

)1/n

or r =

(

C

sinh(nϕ)

)1/n

.

In the first case, as ϕ → ±∞, the curve γ tends to the two points (2C)1/n

2 (1,±1) of
the light cone, that it touches orthogonally.

In the second case, as ϕ → +∞, the curve γ tends again to a point of the light
cone, that it touches orthogonally, while, when ϕ → 0, the curve is asymptotic to
a coordinate axis x = 0 or y = 0.

3.4 Normal bundles

The normal bundle S of a submanifold S of Rn is the set

S := {(x, ν) ∈ Dn = Rn ⊕ Rn | x ∈ S , ν ∈ NxS}.

We recall that a submanifold σ is said to be austere if, for any normal vector
field ν, the corresponding curvatures, i.e. the eigenvalues of the quadratic form
Aν := 〈h(·, ·), ν〉, are symmetrically arranged around zero on the real line.

In the complex case Cn, it has been proved in [HL1] that S is a Lagrangian
submanifold, and that it is minimal if and only if S is austere. Since the symplectic
structure of Dn is the same as that of Cn, this fact that S is Lagrangian still holds
true here. It turns out that the minimality criterion for S is the same in the para-
complex case:

Theorem 5. The Lagrangian submanifold S is minimal with respect to the neutral metric
〈·, ·〉 if and only if S is austere.

Proof. Let x be a point of S and (ν1, . . . , νn−p) a local orthonormal frame of the
normal space NS , defined in a neighbourhood of x. There exists a local orthonor-
mal frame (e1, . . . , ep) in a neighbourhood of x which is principal with respect to
ν1, i.e. it diagonalizes Aν1

. We denote by κ1, . . . , κp the corresponding principal
curvatures, i.e. Aν1

ei = κiei, ∀ i, 1 ≤ i ≤ p. Observe that if t ∈ R, Atν1
= tAν1

.
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We are going to calculate the Lagrangian angle of S at a point (x, ν). Without
loss of generality, we may assume that ν = tν1, t ∈ R.

We set
Ei(x, ν) := (ei,−tκiei) ∀i, 1 ≤ i ≤ p

and
Ep+j(x, ν) := (0, νj) ∀j, 1 ≤ j ≤ n − p.

We therefore get a local tangent frame (E1, . . . , En) along S in a neighbourhood
of (x, ν). Next, we calculate

detD (E1, . . . , En) = τn−p
p

∏
i=1

(1 − τtκi).

Using Theorem 1, we get

β(x, ν) = arg

(

τn−p
p

∏
i=1

(1 − τtκi)

)

.

Proceeding like in [HL1], it is easily seen that this number does not depend on t
if and only if the principal curvatures κi are symmetrically arranged around zero
on the real line, i.e. S is austere.

4 Equivariant self-similar Lagrangian submanifolds in Dn

In this section, we describe some self-similar Lagrangian solutions of the Mean
Curvature Flow (MCF). The simplest and most important example of a self-similar
flow is when the evolution is a homothety. Such a self-similar submanifold F with

mean curvature vector ~H satisfies the following non-linear, elliptic system:

~H + λF⊥ = 0, (1)

where F⊥ denotes the projection of the position vector F onto the normal space
of the submanifold, and λ is a real constant. If λ is strictly positive constant, the
submanifold shrinks in finite time to a single point under the action of the MCF,
its shape remaining unchanged. If λ is negative, the submanifold will expand,
its shape again remaining the same. In the case of vanishing λ, we recover the
case of minimal submanifolds, which of course are the stationary points of the
MCF. We point out that in the para-Kähler setting, unlike the Kähler case, the
shrinking and expanding case are roughly equivalent, since a change of sign in
the metric 〈·, ·〉 7−→ −〈·, ·〉 (which can be explicitly performed by applying the
point transformation z 7→ Jz) yields a change of sign in the mean curvature vector
~H 7−→ −~H and leaves unchanged the term F⊥. Hence, without loss of generality,
we may assume that λ ≥ 0.

As in Section 3.3, we consider the immersions

F : I × Sn−1 −→ Dn

(s, σ) 7−→ γ(s)ι(σ),
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where γ ⊂ D2 is a regular, planar curve with γ 6= 0. We recall that (e1, . . . , en−1)
is a local orthonormal frame. In particular, the vectors

JFs = τγ̇σ and JdF(ei) = τγei, 1 ≤ i ≤ n − 1

span the normal space of F. A straightforward computation shows that 〈~H, JF(ei)〉
and 〈F, JF(ei)〉 vanish ∀ i, 1 ≤ i ≤ n − 1. Hence the self-similar equation (1) is
equivalent to the scalar equation

〈~H, JFs〉+ λ〈F⊥ , JFs〉 = 0. (2)

Next, we calculate

〈~H, JFs〉 =
〈γ̈, Jγ̇〉

〈γ̇, γ̇〉
− (n − 1)

〈γ, Jγ̇〉

〈γ, γ〉
.

We also have, recalling that JFs is a normal vector,

〈F⊥ , JFs〉 = 〈F, JFs〉 = 〈γσ, Jγ̇σ〉 = 〈γ, Jγ̇〉,

hence Equation (2) becomes

〈γ̈, Jγ̇〉

〈γ̇, γ̇〉
+

(

−
n − 1

〈γ, γ〉
+ λ

)

〈γ, Jγ̇〉 = 0. (3)

We now assume that γ is parametrized by “arclength”, i.e. 〈γ̇, γ̇〉 = ±1 := ǫ′. It
follows that ν := Jγ̇ is a unit normal vector and that the acceleration vector γ̈ is
normal to the curve, hence collinear to ν.

It follows that there exists (p′, q′) ∈ {0, 1}2 and θ : I −→ R such that

γ̇(s) = (−1)p′τq′
(

cosh(θ(s)) + τ sinh(θ(s))
)

.

Differentiating, we get

〈γ̈, Jγ̇〉 = (−1)q′+1θ̇ = −ǫ′θ̇,

so that
〈γ̈, Jγ̇〉

〈γ̇, γ̇〉
=

−ǫ′ θ̇

ǫ′
= −θ̇.

In order to deal with the other terms of Equation (3), we use “polar” coordinates
for γ:

γ(s) = (−1)pτqr(s)
(

cosh(ϕ(s)) + τ sinh(ϕ(s))
)

where (p, q) ∈ {0, 1}2, r(s) : I −→ (0, ∞) and ϕ(s) : I → R.

Observe that q =
1 − ǫ

2
, where ǫ ∈ {−1, 1} is defined by 〈γ, γ〉 = ǫ r2. The

induced metric is definite if q = q′ and Lorentzian if q 6= q′. Hence Equation (3)
becomes

−θ̇ +

(

−ǫ
n − 1

r2
+ λ

)

〈γ, ν〉 = 0. (4)

For the remainder of the analysis of the equation it is convenient to deal sepa-
rately with the definite and Lorentzian cases:
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The definite case

Differentiating γ and setting α := θ − ϕ, we have the following “compatibility
equation”:

(ṙ, ϕ̇) = η
(

cosh α,
1

r
sinh α

)

where we have set for brevity η := (−1)p+p′ . On the other hand, a calculation
gives

〈γ, ν〉 = η ǫ r sinh α.

So finally, putting together the compatibility equations and Equation (3), we get
a 3 × 3 system











ṙ = η cosh α

ϕ̇ = η 1
r sinh α

θ̇ = η
(

−n−1
r + λ′r

)

sinh α,

where we have set for convenience λ′ := ǫλ. Observe that the integral curves of
the system do not depend on η, so without loss of generality we may assume that
η = 1. Moreover, recalling that α = θ − ϕ, we are left with the 2 × 2 system:

{

ṙ = cosh α
α̇ =

(

−n
r + λ′r

)

sinh α

The system enjoys a first integral: E(r, α) = rn exp(−λ′r2/2) sinh α. It follows that
the projection on the plane {(r, α)} of the integral curves (r, α, ϕ) have two ends,
one with (r, α) −→ (0,±∞) and the other with (r, α) −→ (+∞,±∞) if λ′ > 0 or
(r, α) −→ (0,±∞) if λ′ ≤ 0. In order to understand the asymptotic behaviour of
γ, we need to study the variable ϕ. Using the fact that

dϕ

dr
=

sinh α

r cosh α
=

1

r

(

r2n exp(−λ′r2)

E2
+ 1

)−1/2

,

we obtain that

ϕ(s) = ϕ(0) +
∫ s

0
ϕ̇(σ)dσ = ϕ(0) +

∫ r

r0

1

ρ

(

ρ2n exp(−λ′ρ2)

E2
+ 1

)−1/2

dρ.

We first see that ϕ ∼r∼0 log(r) + C, which implies that the curve touches orthog-
onally the light cone as r → 0. On the other hand, as r → +∞, the situation
depends on λ′: in the case λ′ > 0, we still have ϕ ∼r∼+∞ log(r) + C, which im-
plies that as r → +∞, the curve γ becomes asymptotically parallel to a branch of
the light cone, while if λ′ ≤ 0, ϕ converges to a constant, which means that the
curve γ is asymptotic to a straight line.

The Lorentzian case

We proceed exactly as in the previous case. Setting α := θ − ϕ and λ′ := ǫλ, we
are left with the 2 × 2 system:

{

ṙ = sinh α
α̇ =

(

−n
r + λ′r

)

cosh α,
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which enjoys a first integral: E(r, α) = rn exp(−λ′r2/2) cosh α. In order to de-
scribe the global behaviour of γ, we come back to the study of ϕ. Since we have

dϕ

dr
=

1

r

(

1 −
r2n exp(−λ′r2)

E2

)−1/2

we obtain

ϕ(s) = ϕ(0) +
∫ r

r0

1

ρ

(

1 −
ρ2n exp(−λ′ρ2)

E2

)−1/2

dρ.

In the case λ′ ≤ 0, the variable r is bounded on the integral curves (r, α, ϕ), which
have two ends with (r, α) −→ (0,±∞). We still have ϕ ∼r∼0 log(r) + C so again
the curve γ touches orthogonally the light cone as r → 0 (in the case λ′ = 0 and
n = 2, we recover the example of the torus found in Section 3.3).

If λ′ > 0, the phase diagram is more complicated: it has a critical point

(r0, α0) = (
√

n
λ′ , 0), which corresponds to γ being a hyperbola (constant curva-

ture curve): if ǫ = −1, we have γ(s) = ±r0(cosh(s/r0), sinh(s/r0)) which is
“self-expanding” since here λ < 0, and if ǫ = 1, we have γ(s) = ±r0(sinh(s/r0),
cosh(s/r0)), (which is “self-shrinking” since λ > 0).

The properties of the other solutions depend on the energy level

E0 :=
(

n
λ′

)n/2
exp(−n2/2):

— Curves with E < E0 and r < r0. They are symmetric with respect to the r
axis and enjoy two ends with r → 0. They are similar to the Lorentzian case
with λ′ > 0;

— Curves with E < E0 and r > r0. They are also symmetric with respect to the
r axis and enjoy two ends with r → +∞ which are asymptotically parallel
to the light cone;

— Curves with E ≥ E0; These curves enjoys one end with r → 0, with the
curve touching orthogonally the light cone, and another one with r → +∞,
asymptotically parallel to the light cone.

Appendix: para-complex and almost-para-complex manifolds

The purpose of this Appendix is to prove the following statement:

An almost para-complex structure J comes from a para-complex structure if and only
if its para-Nijenhuis tensor N J vanishes.

Proof. Given an almost para-complex structure J, we denote by D+ and D− the
two corresponding eigendistributions, i.e. D± := Ker(J ∓ Id). The following
lemma, whose proof we leave to the reader, expresses the para-Nijenhuis tensor
in terms of the decomposition:
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Lemma 3. Take two vector fields X1 and X2 on M and write the decomposition X1 =
U1 + V1 and X2 = U2 + V2 in terms of TM = D+ ⊕D−. Then we have

N J(X1, X2) = 2
(

[U1, U2]− J[U1, U2] + [V1, V2] + J[V1, V2]
)

.

We assume first that N J vanishes. By Lemma 3, X1 ∈ D+ (hence V1 = 0)
implies that [U1, U2] = J[U1, U2], i.e. [U1, U2] ∈ D+, i.e.D+ is integrable. Analo-
gously, if X2 ∈ D−, we get that [V1, V2] ∈ D−, i.e. D− is integrable.

Hence, in the neighbourhood of any point we can find local coordinates
(u1, · · · , un, v1, · · · , vn) on M such that the integral submanifolds of D+ (resp.
D−) are {vi = const, 1 ≤ i ≤ n} (resp. {ui = const, 1 ≤ i ≤ n}). In particu-
lar, we have J ∂ui = ∂ui and J ∂vi = −∂vi. We define another local system of
coordinate setting xi := ui + vi, yi := ui − vi. We claim that the collection of
all such system of coordinates define an atlas of para-complex coordinates. To
see this, we need to prove that the transition functions satisfy the para-Cauchy-
Riemann equations. Let (x1, . . . , xn, y1, . . . , yn) and (x′1, . . . , x′n, y′1, . . . , y′n) be two
local system of coordinates constructed as before. Let (u1, . . . , un, v1, . . . , vn) and
(u′

1, . . . , u′
n, v′1, . . . , v′n) be the associated “null” coordinates (between quotes be-

cause here there is no metric). By assumption, the integral submanifolds of D+

and D− may be expressed either in terms of (u1, . . . , un, v1, . . . , vn) or (u′
1, . . . , u′

n,
v′1, . . . , v′n): in particular,

{ui = const., 1 ≤ i ≤ n} = {u′
i = const., 1 ≤ i ≤ n}

and
{vi = const., 1 ≤ i ≤ n} = {v′i = const., 1 ≤ i ≤ n},

therefore we have
∂u′

i

∂vj
=

∂v′i
∂uj

= 0, ∀ i, j, 1 ≤ i, j ≤ n,

which is equivalent to the para-Cauchy-Riemann equations

∂x′i
∂xj

=
∂y′i
∂yj

and
∂x′i
∂yj

=
∂y′i
∂xj

, ∀ i, j, 1 ≤ i, j ≤ n.

Conversely, let M be a manifold equipped with a para-complex structure, i.e.
an atlas whose transition functions satisfy the para-Cauchy-Riemann equations.
This implies the global existence of two foliations: locally, they are defined by
{ui = const, 1 ≤ i ≤ n} and {vi = const, 1 ≤ i ≤ n} and the para-Cauchy-
Riemann equations precisely say that the definition is independent of a particular
choice of coordinates, and may therefore be extended globally. Denote by D+ and
D− the two distributions tangent to these foliations, which are the eigenspaces
of J. By Frobenius theorem, [U1, U2] ∈ D+ and [V1, V2] ∈ D−. By Lemma 3,
N J(X1, X2) vanishes.
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