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Abstract

In this manuscript, we obtain some common fixed point results of two
pairs having the common limit range property in the setting of integral type
contraction in the framework of symmetric (semi-metric) spaces. Moreover,
we extend our results from two pairs of self-mappings to four finite fami-
lies of self mappings to get common fixed points. Our results improve and
extend a host of previously known results. Further, we establish some illus-
trative examples to show the validity of the main results.

1 Introduction and preliminaries

It is claimed that one of the dispensable tools of nonlinear analysis is the fixed
point theory. The importance of fixed point theory arise from the application
potential not only in the distinct branches of mathematics, but also various disci-
plines in quantitive sciences. The theory of fixed point is essential for the
existence (and usually uniqueness) for solution of nonlinear differential equa-
tions, integrodifferential equations and integral equations in various abstract spa-
ces. The renowned Banach fixed point theorem [6], the Banach contraction map-
ping principle, is the most impressed and earlier results in this direction, see e.g.
[8, 10, 12, 13, 24, 31, 32, 33, 35, 38]. Banach [6] proved that every contraction has a
unique fixed point in the context of a complete metric space. This remarkable re-
sults has been generalized in various ways in distinct abstract spaces. Following
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this paper, many authors have investigated the answer of the following ques-
tion: Is it possible to guarantee the existence (and uniqueness) of a fixed point by
replacing the weaker conditions on the set-up abstract space or on mappings.
One of the remarkable answer of this question was given by Hicks and Rhoades
[19]. In the mentioned paper, the authors obtained some nice results on common
fixed point theorems in a semi-metric (symmetric) spaces. The notion of symmet-
ric was obtained from metric by excluding the assumption of the subadditivity,
that is, triangle inequality. Recently, Sintunavarat and Kumam [46] defined more
refine notion, common limit range property. This property raze the requirement
of completeness of the spaces closedness of the underlying subspaces. Very re-
cently, Karapınar et al. [34] utilized the notion of common limit range property
and established some common fixed point results for Lipschitz type mappings in
context of symmetric spaces.

On the other hand, in 2002, Branciari [9] firstly established an integral type
fixed point theorem for a self mapping which generalized Banach’s contraction
principle. Following this pioneer paper, a number of fixed point results for dif-
ferent integral type contraction condition have been reported by various authors.
For more details, we refer the reader to e.g. [5, 4, 2, 7, 14, 37, 41, 42, 48, 49, 51].

In this manuscript, we obtain some common fixed point results of two pairs
having the common limit range property in the setting of integral type φ-contrac-
tion in the framework of symmetric (semi-metric) spaces. As an extension of
presented result, we state some fixed point theorems for five mappings, six map-
pings and for four finite families of mappings in metric spaces by using the notion
of the pairwise commuting mappings which is studied by Imdad et al. [23]. We
conclude with examples that supports the usefulness of our results.

We recollect the essential definitions and basic results that will be needed later
on.

For a non-empty set X, a real valued function d : X × X → [0, ∞) is called
symmetric if

(sm1) d(x, y) = 0 ⇐⇒ x = y,

(sm2) d(x, y) = d(y, x),

hold for all x, y ∈ X. For any x ∈ X, we define an open ball with respect to
the corresponding topology, Td on X, via B(x, ε) = {y ∈ X : d(x, y) < ε} where
x ∈ X and ε > 0. If for each ε > 0 and x ∈ X, the set B(x, ε) is a neighborhood of x
due to the topology Td, then a symmetric space d is a semi-metric. We say that the
sequence {xn} converges to a point x ∈ X, denoted as xn → x, if lim

n→∞
d(xn, x) = 0

with respect to the topology Td. For more details about the topological properties
of symmetric space (X, d) see e.g. [11].

In the proof of the existence and uniqueness of a fixed point, whether the space
is Hausdorff has a critical role. On the other hand, the symmetric d may not be
continuous since symmetric space is not necessarily Hausdorff. To compensate
the missing of the continuity of a symmetric d and being Hausdorff of the related
space, some additional axioms were suggested, see e.g. [4], [16], [19], [52].
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Definition 1. Suppose that (X, d) is a symmetric space where X is a non-empty
set. We suppose also that the sequences {xn},{yn}, and the points x, y in X. Then,

(W3) lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, y) = 0 imply x = y [52].

(W4) lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, yn) = 0 imply lim
n→∞

d(yn, x) = 0 [52].

(HE) lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, x) = 0 imply lim
n→∞

d(xn, yn) = 0 [4].

(1C) We say that a symmetric d is 1-continuous if lim
n→∞

d(xn, x) = 0 implies

lim
n→∞

d(xn, y) = d(x, y) [16].

(CC) We say that a symmetric d is continuous if lim
n→∞

d(xn, x) = 0 and

lim
n→∞

d(yn, y) = 0 imply lim
n→∞

d(xn, yn) = d(x, y) [16].

Here, it is observed that (CC) =⇒ (1C), (W4) =⇒ (W3), and (1C) =⇒ (W3).
We notice that the converse of the implications above are not true (see e.g. [15]).
As it is expected, (CC) implies all four conditions, (W3), (W4), (HE) and (1C).
Employing these axioms, several fixed point results have appeared in framework
of symmetric spaces (see [3, 11, 17, 18, 20, 21, 22, 26, 27]).

Definition 2. Suppose that (X, d) is a symmetric (semi-metric) space. Let A and
S be two self mappings on X. We say that the pair (A, S) is

1. commuting if ASx = SAx, for all x ∈ X,

2. weakly commuting if d(ASx, SAx) ≤ d(Ax, Sx), for all x ∈ X, [44],

3. compatible if lim
n→∞

d(ASxn, SAxn) = 0,[29], under the assumption that {xn}

is a sequence in X such that lim
n→∞

d(Axn, t) = lim
n→∞

d(Sxn, t) = 0, for some

t ∈ X,

4. non-compatible if there exists a sequence {xn} in X for some t ∈ X such
that lim

n→∞
d(Axn, t) = lim

n→∞
d(Sxn, t) = 0 but lim

n→∞
d(ASxn, SAxn) are either

non-zero or non-existent,[40],

5. weakly compatible if self-mappings A and S commute at their coincidence
points, ( ASu = SAu whenever Au = Su, for some u ∈ X), [30].

For more details on systematic comparisons and illustrations of above
described notions, we refer to Singh and Tomar [45] and Murthy [39].

Definition 3. [2] Suppose that (X, d) is a symmetric (semi-metric) space. We said
that a pair self-mappings (A, S) on X, satisfy the property (E.A) if there exists a
sequence {tn} and t in X such that

lim
n→∞

d(Atn, t) = lim
n→∞

d(Stn, t) = 0, (1.1)



596 S. Chauhan – E. Karapınar

Definition 4. [36] Suppose that (X, d) is a symmetric (semi-metric) space and
A, S, B, T be self mappings on X. Pairs (A, S) and (B, T) of self mappings are said
to satisfy the common property (E.A), if there exist two sequences {tn} and {sn}
in X, and some t ∈ X such that

lim
n→∞

d(Atn, t) = lim
n→∞

d(Stn, t) = lim
n→∞

d(Bsn, t) = lim
n→∞

d(Tsn, t) = 0. (1.2)

Definition 5. [46] Suppose that (X, d) is a symmetric (semi-metric) space and
A, S are two self mappings on X. We say that a pair (A, S) is said to satisfy the
common limit range of S property, (CLRS) property, if there exists a sequence
{tn} in X such that

lim
n→∞

d(Atn, t) = lim
n→∞

d(Stn, t) = 0,

where t ∈ S(X).

Hence it is assured that a pair (A, S) satisfying the property (E.A) along with
closedness of the subspace S(X) always enjoys the (CLRS) property (see [21,
Examples 2.16-2.17]).

Definition 6. [34] Suppose that (X, d) is a symmetric (semi-metric) space and
A, S, B, T be self mappings on X. Pairs (A, S) and (B, T) of self mappings are said
to satisfy the common limit in the range of S and T property, (CLRST) property
for short, if there exist two sequences {tn} and {sn} in X such that

lim
n→∞

d(Atn, t) = lim
n→∞

d(Stn , t) = lim
n→∞

d(Bsn, t) = lim
n→∞

d(Tsn, t) = 0,

where t ∈ S(X) ∩ T(X).

Therefore, common limit range property implies the common property (E.A).
On the other hand, the converse of this implication is not true in general (see e.g.
[34, Example 5]).

Definition 7. [23] Suppose that (X, d) is a symmetric (semi-metric) space. Let
{Ai}

m
i=1 and {Sk}

n
k=1 be Two families of self mappings on X. Two families {Ai}

m
i=1

and {Sk}
n
k=1 of self-mappings are called pairwise commuting if

1. Aj Ak = Ak Aj for all k, j ∈ {1, 2, . . . , m},

2. SjSk = SkSj for all k, j ∈ {1, 2, . . . , n},

3. AjSk = Sk Aj for all j ∈ {1, 2, . . . , m} and k ∈ {1, 2, . . . , n}.

2 Main Results

We start to this section by recalling the following auxiliary functions. Let Φ be the
set of all functions φ such that φ : R

+ → R
+ with the conditions 0 < φ(t) < t for

each t > 0 and φ(0) = 0. Let Λ be set of all functions ϕ such that ϕ : R
+ → R

+

is a summable and non-negative Lebesgue-integrable mapping such that for all
ǫ > 0

∫ ǫ

0
ϕ(t)dt > 0. (2.1)

We, first, prove the following auxiliary result.
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Lemma 1. Let X be a non-empty set and (X, d) be a symmetric (semi-metric) space
(X, d) satisfying the condition (CC). Suppose that self-mappings A, B, S and T satisfy
the conditions below:

1. either the pair (A, S) satisfies the (CLRS) property or the pair (B, T) satisfies the
(CLRT) property,

2. A(X) ⊂ T(X)
(

or B(X) ⊂ S(X)
)

,

3. T(X)
(

or S(X)
)

is a closed subset of X,

4. {Byn} converges for every sequence {yn} in X such that {Tyn} converges
(

or

{Axn} converges for every sequence {xn} in X such that {Sxn} converges
)

,

5. there exists φ ∈ Φ such that

∫ d(Ax,By)

0
ϕ(t)dt ≤ φ

(

∫ aL(x,y)+(1−a)M(x,y)

0
ϕ(t)dt

)

, (2.2)

for all x, y ∈ X, 0 ≤ a ≤ 1

where ϕ ∈ Λ and

L(x, y) = max {d(Sx, Ty), d(Sx, By), d(By, Ty)}

M(x, y) =

(

max

{

d2(Sx, Ty), d(Sx, By)d(By, Ty), d(Sx, Ty)d(Sx, By),
d(Sx, Ty)d(By, Ty), d2(By, Ty)

})
1
2

.

Then, the pairs (A, S) and (B, T) share the (CLRST) property.

Proof. Suppose that (A, S) satisfies the (CLRS) property with respect to mapping
S, that is, there exists a sequence {xn} in X and t ∈ S(X) such that

lim
n→∞

d(Sxn, t) = lim
n→∞

d(Axn, t) = 0.

Regarding the condition (CC), we obtain that lim
n→∞

d(Axn, Sxn) = 0. So, for

any sequence {xn} in X, there exists another sequence {yn} in X with Axn = Tyn,
owing to the fact that A(X) ⊂ T(X). Hence, t ∈ S(X) ∩ T(X) since T(X) is
closed. Consequently, we derive that

lim
n→∞

d(Axn, t) = lim
n→∞

d(Sxn, t) = lim
n→∞

d(Tyn, t) = t ∈ S(X) ∩ T(X).

By (4), the sequence {Byn} converges. Let the sequence {Byn} converges to
z( 6= t) as n → ∞. Now we need to show that z = t.

Again by (CC), we have lim
n→∞

d(Sxn, Byn) = d(t, z) and lim
n→∞

d(Axn, Byn) =

d(t, z). On using inequality (2.2) with x = xn, y = yn, we have

∫ d(Axn,Byn)

0
ϕ(t)dt ≤ φ

(

∫ aL(xn,yn)+(1−a)M(xn,yn)

0
ϕ(t)dt

)

, (2.3)
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where

L(xn, yn) = max {d(Sxn, Tyn), d(Sxn, Byn), d(Byn, Tyn)}

= max {d(Sxn, Axn), d(Sxn, Byn), d(Byn, Axn)} ,

and

M(xn, yn) =



max







d2(Sxn, Tyn), d(Sxn, Byn)d(Byn, Tyn),
d(Sxn, Tyn)d(Sxn, Byn), d(Sxn, Tyn)d(Byn, Tyn),

d2(Byn, Tyn)











1
2

=



max







d2(Sxn, Axn), d(Sxn, Byn)d(Byn, Axn),
d(Sxn, Axn)d(Sxn , Byn), d(Sxn, Axn)d(Byn, Axn),

d2(Byn, Axn)











1
2

.

Taking limit as n → ∞ in (2.3), we get

lim
n→∞

∫ d(Axn ,Byn)

0
ϕ(t)dt ≤ lim

n→∞
φ

(

∫ aL(xn,yn)+(1−a)M(xn,yn)

0
ϕ(t)dt

)

∫ d(t,z)

0
ϕ(t)dt ≤ φ

(

lim
n→∞

∫ aL(xn,yn)+(1−a)M(xn,yn)

0
ϕ(t)dt

)

, (2.4)

where

lim
n→∞

L(xn, yn) = lim
n→∞

max {d(Sxn, Axn), d(Sxn, Byn), d(Byn, Axn)}

= max {0, d(t, z), d(z, t)}

= d(t, z),

and

lim
n→∞

M(xn, yn) =



 lim
n→∞

max







d2(Sxn, Axn), d(Sxn, Byn)d(Byn, Axn),
d(Sxn, Axn)d(Sxn, Byn),

d(Sxn, Axn)d(Byn, Axn), d2(Byn, Axn)











1
2

=
(

max
{

0, d(t, z)d(z, t), 0, 0, d2(z, t)
}) 1

2

=
(

d2(t, z)
)

1
2

= d(t, z).

Hence (2.4) implies

∫ d(t,z)

0
ϕ(t)dt ≤ φ

(

∫ ad(t,z)+(1−a)d(t,z)

0
ϕ(t)dt

)

= φ

(

∫ d(t,z)

0
ϕ(t)dt

)

<

∫ d(t,z)

0
ϕ(t)dt,
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which is a contradiction. Therefore,
∫ d(t,z)

0
ϕ(t)dt = 0. In view of (2.1), we

obtain d(t, z) = 0, i.e., Byn → t as n → ∞. Hence the pairs (A, S) and (B, T)
satisfy the (CLRST) property. This completes the proof.

Now, we state the first theorem of this manuscript as follows.

Theorem 1. Let (X, d) be a symmetric space. Suppose that the self-mappings A, B, S
and T defined on X satisfying the hypothesis (4) of Lemma 1 with (1C) and (HE). Each
pair (A, S) and (B, T) have a coincidence point each if the pairs (A, S) and (B, T) satisfy
the (CLRST) property. Furthermore, we conclude that the self-mappings A, B, S and T
have a unique common fixed point if (A, S) and (B, T) are weakly compatible.

Proof. Let (A, S) and (B, T) be pairs of self-mappings on X and satisfy the (CLRST)
property. Thus, we have sequences {xn} and {yn} in X such that

lim
n→∞

d(Axn, t) = lim
n→∞

d(Sxn, t) = lim
n→∞

d(Tyn, t) = lim
n→∞

d(Byn, t) = 0,

where t ∈ S(X) ∩ T(X). Since t ∈ S(X), there exists a point u ∈ X such that
Su = t. Hence, we derive that

lim
n→∞

d(Axn, Su) = lim
n→∞

d(Sxn, Su) = lim
n→∞

d(Tyn, Su) = lim
n→∞

d(Byn, Su) = 0,

Now we assert that Au = t. Suppose that Au 6= t. So, by using (2.2) with
x = u and y = yn, we get

∫ d(Au,Byn)

0
ϕ(t)dt ≤ φ

(

∫ aL(u,yn)+(1−a)M(u,yn)

0
ϕ(t)dt

)

, (2.5)

where

L(u, yn) = max {d(Su, Tyn), d(Su, Byn), d(Byn, Tyn)}

and

M(u, yn) =



max







d2(Su, Tyn), d(Su, Byn)d(Byn, Tyn),
d(Su, Tyn)d(Su, Byn),

d(Su, Tyn)d(Byn, Tyn), d2(Byn, Tyn)











1
2

.

Regarding (1C) and (HE) together with letting n → ∞ in (2.5), we obtain that

∫ d(Au,t)

0
ϕ(t)dt ≤ lim

n→∞
φ

(

∫ aL(u,yn)+(1−a)M(u,yn)

0
ϕ(t)dt

)

= φ

(

lim
n→∞

∫ aL(u,yn)+(1−a)M(u,yn)

0
ϕ(t)dt

)

, (2.6)

where

lim
n→∞

L(u, yn) = lim
n→∞

max {d(Su, Tyn), d(Su, Byn), d(Byn, Tyn)}

= 0,
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and

lim
n→∞

M(xn, yn) =



max







d2(Su, Tyn), d(Su, Byn)d(Byn, Tyn),
d(Su, Tyn)d(Su, Byn),

d(Su, Tyn)d(Byn, Tyn), d2(Byn, Tyn)











1
2

= 0.

From (2.6), we conclude that

∫ d(Au,t)

0
ϕ(t)dt ≤ φ

(

∫ a.0+(1−a)0

0
ϕ(t)dt

)

,

= 0,

a contradiction. Hence, by taking (2.1) into account, we find d(Au, t) = 0 and so
t = Au = Su.

Since t ∈ T(X), there exists a point v ∈ X such that Tv = t. We shall show
that Bv = Tv. Suppose that Bv 6= Tv. Then, by using the inequality (2.2) with
x = u, y = v, we get

∫ d(t,Bv)

0
ϕ(t)dt =

∫ d(Au,Bv)

0
ϕ(t)dt

≤ φ

(

∫ aL(u,v)+(1−a)M(u,v)

0
ϕ(t)dt

)

, (2.7)

where

L(u, v) = max {d(Su, Tv), d(Su, Bv), d(Bv, Tv)}

= max {d(t, t), d(t, Bv), d(Bv, t)}

= d(t, Bv)

and

M(u, v) =

(

max

{

d2(Su, Tv), d(Su, Bv)d(Bv, Tv), d(Su, Tv)d(Su, Bv),
d(Su, Tv)d(Bv, Tv), d2(Bv, Tv)

})
1
2

=

(

max

{

d2(t, t), d(t, Bv)d(Bv, t), d(t, t)d(t, Bv),
d(t, t)d(Bv, t), d2(Bv, t)

})
1
2

=
(

d2(t, Bv)
) 1

2

= d(t, Bv).

Hence (2.7) implies

∫ d(t,Bv)

0
ϕ(t)dt ≤ φ

(

∫ ad(t,Bv)+(1−a)d(t,Bv)

0
ϕ(t)dt

)

= φ

(

∫ d(t,Bv)

0
ϕ(t)dt

)

<

∫ d(t,Bv)

0
ϕ(t)dt,
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a contradiction. Thus, we have
∫ d(t,Bv)

0
ϕ(t)dt = 0. On account of (2.1), we

derive that Bv = Tv = t.
We derive that At = ASu = SAu = St owing to the fact that Au = Su and the

self mappings A and S are weakly compatible. At this point, we shall prove that
t is a common fixed of the self-mappings A and S. We assume that At 6= t. By
using the inequality (2.2) with x = t, y = v, we have

∫ d(At,t)

0
ϕ(t)dt =

∫ d(At,Bv)

0
ϕ(t)dt

≤ φ

(

∫ aL(t,v)+(1−a)M(t,v)

0
ϕ(t)dt

)

, (2.8)

where

L(t, v) = max {d(St, Tv), d(St, Bv), d(Bv, Tv)}

= max {d(At, t), d(At, t), d(t, t)}

= d(At, t)

and

M(t, v) =

(

max

{

d2(St, Tv), d(St, Bv)d(Bv, Tv), d(St, Tv)d(St, Bv),
d(St, Tv)d(Bv, Tv), d2(Bv, Tv)

})
1
2

=

(

max

{

d2(At, t), d(At, t)d(t, t), d(At, t)d(At, t),
d(At, t)d(t, t), d2(t, t)

})
1
2

=
(

d2(At, t)
)

1
2

= d(At, t).

From (2.8), we get

∫ d(At,t)

0
ϕ(t)dt ≤ φ

(

∫ ad(At,t)+(1−a)d(At,t)

0
ϕ(t)dt

)

= φ

(

∫ d(At,t)

0
ϕ(t)dt

)

<

∫ d(At,t)

0
ϕ(t)dt,

a contradiction. Consequently, we have At = t = St, that is, t is a common
fixed point of the pair (A, S).

Since the pair (B, T) is weakly compatible, the equality yields that Bt = BTw =
TBw = Tt. If not, then using inequality (2.2) with x = u, y = t, we have

∫ d(t,Bt)

0
ϕ(t)dt =

∫ d(Au,Bt)

0
ϕ(t)dt

≤ φ

(

∫ aL(u,t)+(1−a)M(u,t)

0
ϕ(t)dt

)

, (2.9)
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where

L(u, t) = max {d(Su, Tt), d(Su, Bt), d(Bt, Tt)}

= max {d(t, Bt), d(t, Bt), d(Bt, Bt)}

= d(t, Bv)

and

M(u, t) =

(

max

{

d2(Su, Tt), d(Su, Bt)d(Bt, Tt), d(Su, Tt)d(Su, Bt),
d(Su, Tt)d(Bt, Tt), d2(Bt, Tt)

})
1
2

=

(

max

{

d2(t, Bt), d(t, Bt)d(Bt, Bt), d(t, Bt)d(t, Bt),
d(t, Bt)d(Bt, Bt), d2(Bt, Bt)

})
1
2

=
(

d2(t, Bt)
) 1

2

= d(t, Bt).

Hence (2.9) implies

∫ d(t,Bt)

0
ϕ(t)dt ≤ φ

(

∫ ad(t,Bt)+(1−a)d(t,Bt)

0
ϕ(t)dt

)

= φ

(

∫ d(t,Bt)

0
ϕ(t)dt

)

<

∫ d(t,Bt)

0
ϕ(t)dt,

a contradiction. Therefore, Bt = t = Tt which shows that t is a common fixed
point of the pair (B, T). Hence t is a common fixed point of the self-mappings
A, S, B, T.

We use the method of reductio the absurdum to prove the uniqueness. Sup-

pose, on the contrary, that there is another common fixed point t
′
( 6= t) of the

self-mappings A, B, S, T. Hence, by replacing x = t and y = t
′

in the inequality
(2.2), we observe that

∫ d(t,t
′
)

0
ϕ(t)dt =

∫ d(At,Bt
′
)

0
ϕ(t)dt

≤ φ

(

∫ aL(t,t
′
)+(1−a)M(t,t

′
)

0
ϕ(t)dt

)

, (2.10)

where

L(t, t
′
) = max

{

d(St, Tt
′
), d(St, Bt

′
), d(Bt

′
, Tt

′
)
}

= max
{

d(t, t
′
), d(t, t

′
), d(t

′
, t

′
)
}

= d(t, t
′
)
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and

M(t, t
′
) =

(

max

{

d2(St, Tt
′
), d(St, Bt

′
)d(Bt

′
, Tt

′
), d(St, Tt

′
)d(St, Bt

′
),

d(St, Tt
′
)d(Bt

′
, Tt

′
), d2(Bt

′
, Tt

′
)

}) 1
2

=

(

max

{

d2(t, t
′
), d(t, t

′
)d(t

′
, t

′
), d(t, t

′
)d(t, t

′
),

d(t, t
′
)d(t

′
, t

′
), d2(t

′
, t

′
)

}) 1
2

=
(

d2(t, t
′
)
) 1

2

= d(t, t
′
).

As a result, (2.8) implies that

∫ d(t,t
′
)

0
ϕ(t)dt ≤ φ

(

∫ ad(t,t
′
)+(1−a)d(t,t

′
)

0
ϕ(t)dt

)

= φ

(

∫ d(t,t
′
)

0
ϕ(t)dt

)

<

∫ d(t,t
′
)

0
ϕ(t)dt,

Hence, we obtain that t = t
′
, a contradiction.

Remark 1. Theorem 1 improves the corresponding results contained in Tiwari et
al. [48, Theorem 3.1] as completeness (or closedness) of the underlying subspaces
are not required.

Now, we give an illustrative example.

Example 1. Let X = [2, 11) and the symmetric (semi-metric) d be defined as

d(x, y) = e|x−y| − 1 for all x, y ∈ X. We also assume that (1C) and (HE) are
satisfied. Define the self mappings A, B, S and T and ϕ : R

+ → R
+ by

Ax =

{

2, if x ∈ {2} ∪ (7, 11);
8, if 2 < x ≤ 7.

Bx =

{

2, if x ∈ {2} ∪ (7, 11);
9, if 2 < x ≤ 7.

Sx =







2, if x = 2;
6, if 2 < x ≤ 7;
x − 5, if 7 < x < 11.

Tx =







2, if x = 2;
9, if 2 < x ≤ 7;
x+1

4 , if 7 < x < 11.

Then we have A(X) = {2, 8} * [2, 3) ∪ {9} = T(X) and B(X) = {2, 9} *
[2, 7) = S(X). Also define

ϕ(t) =

{

(ln(1 + t))
1

ln(1+t)
−2
[

1−ln(ln(1+t))
1+t

]

, if t > 0;

0, if t = 0.
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If we choose two sequences as {xn} =
{

7 + 1
n

}

n∈N

, {yn} = {2}
(

or {xn} =

{2}, {yn} =
{

7 + 1
n

}

n∈N

)

, then pairs (A, S) and (B, T) satisfy the (CLRST) prop-

erty:

lim
n→∞

d(Axn, 2) = lim
n→∞

d(Sxn, 2) = lim
n→∞

d(Byn, 2) = lim
n→∞

d(Tyn, 2) = 0,

where 2 ∈ S(X) ∩ T(X). By elementary calculation, we derive the inequality
(2.2) easily. Hence, we can conclude that all the conditions of Theorem 1 holds.
Moreover, we observe that 2 is a unique common fixed point of the self-mappings
A, S, B, T. Notice that the self-mappings A, B, S, T are discontinuous at point 2.
We also emphasize that the subspaces S(X) and T(X) are not closed subspaces
of X. Consequently, the main result of Tiwari et al. [48, Theorem 3.1] is not
applicable here.

Corollary 1. Let (X, d) be a symmetric space and A, B, S, T be a self-mappings on X
satisfying all the hypotheses of Lemma 1 with (CC), then the self-mappings A, B, S, T
have a unique common fixed point if (A, S) and (B, T) are weakly compatible.

Proof. Owing to Lemma 1, it follows that (A, S) and (B, T) satisfy the (CLRST)
property. Consequently, the conditions of Theorem 1 are satisfied, and the self-
mappings A, B, S, T have a unique common fixed point under the assumption
that both the pairs of selfmappings (A, S) and (B, T) are weakly compatible.

It is pointed out that Example 1 cannot be obtained using Corollary 1, since
conditions (2) and (3) of Lemma 1 are not fulfilled. We present another example,
showing the situation where the conclusion can be reached using Corollary 1.

Example 2. Let X = [2, 24) and the symmetric (semi-metric) d be defined as

d(x, y) = e|x−y| − 1 for all x, y ∈ X. Assume also that the condition (CC) is
satisfied. Define ϕ : R

+ → R
+ as in Example 1 and the self mappings A, B, S and

T by

Ax =

{

2, if x ∈ {2} ∪ (9, 24);
16, if 2 < x ≤ 9.

Bx =

{

2, if x ∈ {2} ∪ (9, 24);
4, if 2 < x ≤ 9.

Sx =







2, if x = 2;
5, if 2 < x ≤ 9;
x+1

5 , if 9 < x < 24.
Tx =







2, if x = 2;
17, if 2 < x ≤ 9;
x − 7, if 9 < x < 24.

Then we observe that A(X) = {2, 16} ⊂ [2, 17] = T(X) and B(X) = {2, 4} ⊂
[2, 5] = S(X). It is evident that the pairs (A, S) and (B, T) satisfy the (CLRST)
property Indeed, we have {xn = 9 + 1

n}n∈N, {yn = 2} or {xn = 2},

{yn = 9 + 1
n}n∈N, i.e.,

lim
n→∞

d(Axn, 2) = lim
n→∞

d(Sxn, 2) = lim
n→∞

d(Byn, 2) = lim
n→∞

d(Tyn, 2) = 0,

where 2 ∈ S(X) ∩ T(X). Also all the conditions of Corollary 1 can be easily
verified. It is noted here that 2 is a a unique common fixed point of (A, S) and
(B, T).
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Notice that this example is not applicable for Theorem 1 since S(X), T(X) are
closed subsets of X which demonstrates the situational utility of Corollary 1 over
Theorem 1.

The conclusion of Lemma 1, Theorem 1 and Corollary 1 remains true for a
suitable choice of a = 1.

Corollary 2. Suppose that (X, d) is a symmetric space and self-mappings A, B, S, T on
X satisfy the hypothesis (4) of Lemma 1 with (1C) and (HE). Assume that

1. the pairs of self-mappings (A, S) and (B, T) satisfies the (CLRST) property,

2. there exists φ ∈ Φ such that

∫ d(Ax,By)

0
ϕ(t)dt ≤ φ

(

∫ L(x,y)

0
ϕ(t)dt

)

, (2.11)

where ϕ ∈ Λ and L(x, y) = max {d(Sx, Ty), d(Sx, By), d(By, Ty)}, for all
x, y ∈ X.

Then, both pairs (A, S) and (B, T) have a coincidence point. Furthermore, if the
pairs of (A, S) and (B, T) are weakly compatible, then the self-mappings A, B, S, T have
a unique common fixed point .

On taking ϕ(t) = 1 in Theorem 1, we have the following natural result:

Corollary 3. Suppose that (X, d) is a symmetric space and self-mappings A, B, S, T on
X satisfy the hypothesis (4) of Lemma 1 with the conditions (1C) and (HE). Suppose
also that

1. the pairs (A, S) and (B, T) satisfy the (CLRST) property,

2. there exists φ ∈ Φ such that

d(Ax, By) ≤ φ (aL(x, y) + (1 − a)M(x, y)) , (2.12)

where

L(x, y) = max {d(Sx, Ty), d(Sx, By), d(By, Ty)}

M(x, y) =



max







d2(Sx, Ty), d(Sx, By)d(By, Ty),
d(Sx, Ty)d(Sx, By),

d(Sx, Ty)d(By, Ty), d2(By, Ty)











1
2

,

for all x, y ∈ X, 0 ≤ a ≤ 1. Then, both pairs (A, S) and (B, T) have a coincidence
point. Furthermore, if the pairs (A, S) and (B, T) are weakly compatible, then the self-
mappings A, B, S, T have a unique common fixed point.

By suitable choice of self-mappings, we derived the following.
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Corollary 4. Suppose that (X, d) is a symmetric space and self-mappings A, B, S, T on
X satisfy the hypothesis (4) of Lemma 1 with (1C) and (HE). Suppose that

1. the pair (A, S) enjoys the (CLRS) property,

2. there exists φ ∈ Φ such that

∫ d(Ax,Ay)

0
ϕ(t)dt ≤ φ

(

∫ aL(x,y)+(1−a)M(x,y)

0
ϕ(t)dt

)

, (2.13)

where ϕ ∈ Λ and

L(x, y) = max {d(Sx, Sy), d(Sx, Ay), d(Ay, Sy)}

M(x, y) =



max







d2(Sx, Sy), d(Sx, Ay)d(Ay, Sy),
d(Sx, Sy)d(Sx, Ay),

d(Sx, Sy)d(Ay, Sy), d2(Ay, Sy)











1
2

,

for all x, y ∈ X, 0 ≤ a ≤ 1. Then (A, S) has a coincidence point each. Moreover, A
and S have a unique common fixed point provided the pair (A, S) is weakly compatible.

We present the following result as an application of Theorem 1.

Theorem 2. Suppose that (X, d) is a symmetric space and families of self-mappings
{Ai}

m
i=1, {Bj}

n
r=1, {Sk}

p
k=1 and {Tl}

q
l=1 on X with A = A1A2 . . . Am, B = B1B2 . . . Bn,

S = S1S2 . . . Sp and T = T1T2 . . . Tq satisfy the conditions (1C), (HE) and also (2.2)-
(2.1). Suppose that the pairs (A, S) and (B, T) satisfy the (CLRST) property, then both
of the pairs (A, S) and (B, T) have a coincidence point.

Moreover {Ai}
m
i=1, {Bj}

n
j=1, {Sk}

p
k=1 and {Tl}

q
l=1 have a unique common fixed point

if the families ({Ai}, {Sk}) and ({Br}, {Th}) commute pairwise wherein
i ∈ {1, 2, . . . , m}, k ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , n} and l ∈ {1, 2, . . . , q}.

Proof. The proof can be treated by following the lines in [20]

Now, we indicate that Theorem 2 can be used to derive common fixed point
theorems for any finite number of mappings. As a sample for five mappings,
we can derive the following by setting one family of two members while the
remaining three of single members:

Corollary 5. Suppose that (X, d) is a symmetric space and self-mappings A, B, S, R, T
on X satisfy the hypothesis (4) of Lemma 1 with the conditions (1C) and (HE). Suppose
also that

1. the pairs (A, SR) and (B, T) satisfy the (CLR(SR)(T)) property,

2. there exists φ ∈ Φ such that

∫ d(Ax,By)

0
ϕ(t)dt ≤ φ

(

∫ aL(x,y)+(1−a)M(x,y)

0
ϕ(t)dt

)

, (2.14)
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where ϕ ∈ Λ and

L(x, y) = max {d(SRx, Ty), d(SRx, By), d(By, Ty)}

M(x, y) =



max







d2(SRx, Ty), d(SRx, By)d(By, Ty),
d(SRx, Ty)d(SRx, By),

d(SRx, Ty)d(By, Ty), d2(By, Ty)











1
2

,

for all x, y ∈ X, 0 ≤ a ≤ 1. Then, the pairs (A, SR) and (B, T) have a coincidence
point. Furthermore, the self-mapings A, B, R, S, T have a unique common fixed point
if (A, SR) and (B, T) commute pairwise, that is, AS = SA, AR = RA, SR = RS,
BT = TB.

Similarly, we can derive a common fixed point theorem for six mappings by
setting two families of two members while the rest two of single members:

Corollary 6. Let A, B, H, R, S and T be self mappings of a symmetric (semi-metric) space
(X, d) satisfying (1C) and (HE). Suppose that

1. the pairs (A, SR) and (B, TH) share the (CLR(SR)(TH)) property,

2. there exists φ ∈ Φ such that

∫ d(Ax,By)

0
ϕ(t)dt ≤ φ

(

∫ aL(x,y)+(1−a)M(x,y)

0
ϕ(t)dt

)

, (2.15)

where ϕ ∈ Λ and

L(x, y) = max {d(SRx, THy), d(SRx, By), d(By, THy)}

M(x, y) =



max







d2(SRx, THy), d(SRx, By)d(By, THy),
d(SRx, THy)d(SRx, By),

d(SRx, THy)d(By, THy), d2(By, THy)











1
2

,

for all x, y ∈ X, 0 ≤ a ≤ 1. Then, both of the pairs (A, SR) and (B, TH) have a
points of coincidence. Furthermore, the self-mappings A, B, H, R, S and T have a unique
common fixed point if both of the pairs (A, SR) and (B, TH) commute pairwise, that is,
AS = SA, AR = RA, SR = RS, BT = TB, BH = HB and TH = HT.

By setting A1 = A2 = . . . = Am = A, B1 = B2 = . . . = Bn = B, S1 = S2 =
. . . = Sp = S and T1 = T2 = . . . = Tq = T in Theorem 2, we deduce the following:

Corollary 7. Suppose that (X, d) is a symmetric space and self-mappings A, B, S, T on
X satisfy the hypothesis (4) of Lemma 1 with the conditions (1C) and (HE). Suppose
also that

1. the pairs (Am, Sp) and (Bn, Tq) share the (CLRSp ,Tq) property,
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2. there exists φ ∈ Φ such that

∫ d(Amx,Bny)

0
ϕ(t)dt ≤ φ

(

∫ aL(x,y)+(1−a)M(x,y)

0
ϕ(t)dt

)

, (2.16)

where ϕ ∈ Λ and

L(x, y) = max {d(Spx, Tqy), d(Spx, Bny), d(Bny, Tqy)}

M(x, y) =



max







d2(Spx, Tqy), d(Spx, Bny)d(Bny, Tqy),
d(Spx, Tqy)d(Spx, Bny),

d(Spx, Tqy)d(Bny, Tqy), d2(Bny, Tqy)











1
2

,

for all x, y ∈ X, m, n, p, q are fixed positive integers. If AS = SA and BT = TB,
then the self-mappings A, B, S, T have a unique common fixed point.

Remark 2. Corollary 7 is a weaker generalization of Theorem 1 as the commutativ-
ity requirements (that is, AS = SA and BT = TB) in this corollary are relatively
stronger as compared to weak compatibility in Theorem 1.
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[35] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kyber-
netika (Prague) 11(5), 336–344 (1975) MR0410633 (53 #14381)

[36] Liu, Y., Wu, J., Li, Z.: Common fixed points of single-valued and multivalued
maps. Int. J. Math. Math. Sci. 19, 3045–3055 (2005) MR2206083

[37] Liu, Z., Li, X., Kang, S.M., Cho, S.Y.: Fixed point theorems for mappings sat-
isfying contractive conditions of integral type and applications. Fixed Point
Theory Appl. 64, 18 pp. (2011)

[38] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. (USA) 28, 535–537 (1942)

[39] Murthy, P.P.: Important tools and possible applications of metric fixed point
theory. Proceedings of the Third World Congress of Nonlinear Analysts,
Part 5 (Catania, 2000), Nonlinear Anal. 47(5), 3479–3490 (2001) MR1979244
(2004d:54038)

[40] Pant, R.P.: Noncompatible mappings and common fixed points. Soochow
J. Math. 26(1), 29–35 (2000) MR1755133 (2000m:54048)

[41] Rhoades, B.E.: Two fixed-point theorems for mappings satisfying a general
contractive condition of integral type. Int. J. Math. Math. Sci. 63, 4007–4013
(2003) MR2030391 (2005b:54074)

[42] Samet, B., Vetro, C.: An integral version of Ciric’s fixed point theorem.
Mediterr. J. Math. 9, 225–238 (2012)

[43] Sastry, K.P.R. and Krishna Murthy, I.S.R.: Common fixed points of two par-
tially commuting tangential selfmaps on a metric space, J. Math. Anal. Appl.
250(2), 731–734 (2000)

[44] Sessa, S.: On a weak commutativity condition in fixed point considerations.
Publ. Inst. Math. (Beograd) (N.S.) 34(46), 149–153 (1982)

[45] Singh, S.L., Tomar, A.: Weaker forms of commuting maps and existence
of fixed points. J. Korean Soc. Math. Edu. Ser. B: Pure Appl. Math. 10(3),
145–161 (2003) MR2011365 (2004h:54039)

[46] Sintunavarat, W., Kumam, P.: Common fixed point theorems for a pair of
weakly compatible mappings in fuzzy metric spaces. J. Appl. Math. Article
ID 637958, 14 pages (2011) MR2822403

[47] Suzuki, T.: Meir-Keeler contractions of integral type are still Meir-Keeler
contractions. Int. J. Math. Math. Sci. 2007 Art. ID 39281, 6 pages (2007)
MR2285999 (2007k:54049)

[48] Tiwari, R., Shrivastava, S.K., Pathak, V.K.: A common fixed point theorem
for weakly compatible mappings in symmetric spaces satisfying an integral
type contractive condition. Hacet. J. Math. Stat. 39(2), 151–158 (2010)



612 S. Chauhan – E. Karapınar

[49] Turkoglu, D., Altun, I.: A common fixed point theorem for weakly compat-
ible mappings in symmetric spaces satisfying an implicit relation. Bol. Soc.
Mat. Mexicana 13, 195–205 (2007)

[50] Vetro, C.: On Branciari’s theorem for weakly compatible mappings. Appl.
Math. Lett. 23(6), 700–705 (2010)

[51] Vijayaraju, P., Rhoades, B.E., Mohanraj, R.: A fixed point theorem for a pair
of maps satisfying a general contractive condition of integral type. Internat.
J. Math. Math. Sci. 15, 2359–2364 (2005) MR2184475 (2006g:54050)

[52] Wilson, W.A.: On semi-metric spaces. Amer. J. Math. 53, 361–373 (1931)

Near Nehru Training Centre,
H. No. 274, Nai Basti B-14,
Bijnor-246701, Uttar Pradesh, India.
email: sun.gkv@gmail.com

Department of Mathematics,
Atilim University, 06836, İncek, Ankara, Turkey.
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