On semi-typically real functions which are
generated by a fixed semi-typically real function

Katarzyna Trabka-Wieclaw

Abstract

Let A denote the family of all functions that are analytic in the unit disk
A:={z € C: |z| <1} and normalized by f(0) = f'(0) —1 = 0.
In this paper, we investigate the class 7; defined as follows

7'G::{ F(z)G(z):FGT}, GeT,

where T denotes the class of all semi-typically real functions i.e. 7 := {F €
A:F(z) >0 <= z € (0,1)}. We find the sets Uger Tc and Nger 7o,
the set of all extreme points of 7 and the set of all support points of 7.
Moreover, for the fixed G, we determine the radii of local univalence, of star-
likeness and of univalence of 7.

1 Some properties of the class 7.

Let A denote the family of all functions that are analytic in the unit disk A :=
{z € C: |z| < 1} and normalized by f(0) = f’(0) — 1 = 0. Let A be a subclass of
Aandlet A® := {f € A: f(z) = —f(—z) for z € A}.

Let T denote the well-known class of all typically real functions, i.e. T is the
subclass of A consisting of functions f such that ImzImf(z) > 0,z € A. From the

Received by the editors January 2011.

Communicated by F. Brackx.

2000 Mathematics Subject Classification : 30C45, 30C55.

Key words and phrases : Typically real functions, set of local univalence, radius of local univa-
lence, radius of starlikeness, radius of univalence, extreme points, support points.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 81-90



82 K. Trabka-Wiectaw

definition we conclude that T = {f € A: f(z) e R <= z € (—1,1)}. Robert-
son in [7] gave the explicit relation between a function f € T and a probability
measure y defined on [—1, 1]. Namely

zZ

1) feT <= f(z)= /_11 ki(z)du(t), where ki(z) = T2

The class of semi-typically real functions was considered in [5] and was de-
fined as follows

T:={FeA:F(z) >0 < z€(0,1)}.

For simplicity, instead of & or z — h(z) we will use h(z). We know that for
F € T we have £&) # 0. Thus for F,G € T let us define

zZ

Fé(z) G18(2) =2 <F(Z))€ <G(Z)>H, ec0,1], 1°=1.

z z

Let us recall some properties of the class 7 as the following lemma (see [5]).

Lemma 1.

) FeT < /F(z2) e T?,

3) FeT — 2F() eT.
14z

P. Todorov in [9] gave the estimation for the operator Rez}réz)) for f € T.
Namely

Theorem 1. [P.G. Todorov] For each typically real function we have:

(i)
! g2 4
ReZL ) 1 16;;”, for 2—\V3<r=lz| <1

f(z)
with equality for the function f(z) = ﬁl_zjg = 1 ki(2) + 3 k_1(2) at the points
z = &ir.

(ii) /
zf'(z) _1—r
> <r= <2-—

Re ) Z15r for 0<r=|z| <2 V3

with equality for the functions k1(z) = ==~ and k_1(z) = == at the points

(1-2z)2 (142)?

—r and r, respectively.

Now let us prove that for odd typically real functions the following estimation
is satisfied.
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Theorem 2. For f € T(?) we have

zf'(z) _1—6r2 474
Re f(z) - 1—r4

_ z(1+22)
= a-=2p

for zeA, r=|z|

with equality for the function f(z)

at the points z = =+ir.

Proof. For r > 2 — \/3 the above estimation is an obvious corollary from the
Todorov Theorem. So let us prove it for r < 2 — /3.

Suppose that f € T(?). Then f(z) = (HTZZ) h(z?) for some h € T (see [6]). Thus

zf'(z) 2z 2zK (%) 1\ 1—z% 2221/(2?)
f(z) (1—|—z2 h(z2) _E)__l-i—z2+ h(z2)

We have |z|? < 2 — /3 and ‘ };ﬁ < if:ﬁ From these and the Todorov Theorem
we get
z f'(z) 122 z2 W' (z2)
R — —Re: = 42ReZ %)
e T2 TG
S _1—|—r2 1—r2_1—6r2—|—r4
= 1—r2 142 114
and the proof is complete. n

From (2) we have F € T <= F(z%) = f%(z), f € T®. This relation and
Theorem 2 give us

2 (52 / 62 A
zP(z)_Rezf(z)>1 6r-+r

R R OB S

r=lz|.

Hence, Re*} (/g) > 1_16_rr+2r2 and we get the following corollary.
Corollary 1. For F € T we have

zF'(z) 1—6r+7r2

Re ) = 1-7 for zeA, r=|z|
with equality for the function F(z) = Z((lljzz)f at the points z = —r.

In this paper, we determine the radii of starlikeness rgr, of local univalence
rry and of univalence rg in certain classes of 7. Let us recall some definitions.
Hereafter, let A be a given subclass of \A.

Definition 1. We say that rg7(A) is the radius of starlikeness in the class A, if it
is the maximum of the numbers r € (0,1], such that the inequality Re* f(g) >0
holds in the disk |z| < r for each function f € A.
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Definition 2. We say that rs(A) (r.y(A)) is called the radius of univalence (local
univalence) in the class A, if it is the maximum of numbers r € (0, 1], such that
every function f € A is univalent (local univalent) in |z| < r.

In the class A the following inequalities are satisfied
(4) rst(A) <1g(A) <rru(A).

Definition 3. A set G C A is called the set of local univalence in the class A, if
Viea Viec f'(z) # 0and V,cp\g Jrea f'(z) = 0. We denote the set of local

univalence in the class A by Gry(A).

Definition 4. The class A is convex, if V¢, r,eaVecpo) €f1 + (1 —€)f2 € A

2 Some properties of the class 7.

For typically real functions f,¢ and ¢ € [0,1] we know that fé¢'~¢ € T. Anal-
ogously for functions f,¢ € T and e € [0,1] we have fig!~¢ € T(®). Be-
cause T = {F : /F(z2) € T? }, thus for semi-typically real functions F, G we

get FEG'¢ € T, e € [0,1]. In this paper, we investigate functions F* G'~¢ for
€= %, i.e. v/ F G. Denote

) TG = { F(z)G(z) : F € 7'} for some fixed function G € T.

Observe that the class 7 is not empty, because the function G belongs to 7.
In the next few theorems we introduce successive important properties of the
class 7Tg.

Theorem 3. 76 = {F(2) : F(z%) = \/G(2) f(2), f € T®}.

Proof. Let G € T. Thus from (5) and the fact that H € T <= /H(z?) = f(=2),
f e T® we get

Te = {F(z) : F(z%) = y/H(22) G(22), H € ’T}

= {F(z):F(zz):f(z) G(zz),feT(z)}. n

Theorem 4. T = {(1—1—2) \/@f(z) . f e T}.

Proof. Assume that G € T. Therefore from (5) and the fact that F € 7 <=
F(z) = Mfz(z),f € T we obtain

z

TGZ{\/M]Q(Z) G(z)zfeT}={<1+z>f<z>J@:feT}- .

Z
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Since the class T is convex, then from Theorem 4 we get the following corol-
lary.
Corollary 2. Forall G € T, the class T is convex.
We know that (see for example [2] and [3]):

ET = {ki:te[-1,1]},
n n

ol = {Zsikti:si Z g =11t E 1,1]},
i=1 i=1

where £A is the set of all extreme points of A, oA is the set of all support points
of A and the function k; is given by (1). Hence for the class 7; we have:

ETc = {(1—!—2)\/@ £(z) :feST}

_ { G(Z kt(z):te[—l,l]},
ol = {1+ Giz f(z) erT}

G n
iz Zs ke, (z eie[0,1],281-:1,151-6[—1,1]}.

i=1

Theorem 5.
W U Tc=T
GeT
i) () T = {%}
GeT (1-2)

Proof. Notice that 7c C T. Hence, UgerTc C 7. Moreover, G € 7T, so
UgerT 76 D Uge7{G} = T. From these facts we conclude that g7 Tc = T
Now we prove the second part of Theorem 5.

Assume that ¢1(z) = (1(1;2)2) and g»(z) = 775 Since g1,82 € T(?), so func-

tions Fy(z) = ((11+Z))4 ,B(z) = [ +Z)2

First we prove that Tp, N Tf, = {ﬁ} Let F € Tr, N Tf,. Therefore from
Theorem 4 we have

7) = (1+z)\/1:17(z)f1(z) _ (1+z)\/FZT(Z)f2(z), where fi,f €T,

Suppose that f1(z) =z +az> + ... and fo(z) = z+ bpz> +.... Then

belong to 7.

F(z) = (14+4z+82%4+.. ) z4+mz®>+..)=z+ (4 +a)z> +...
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and
F(z) = fo(z) =24+ bo2® + ...

Because fi,f» € T,so =2 < a4, < 2and —2 < b, < 2. From these and the
equality 4 + a; = by we conclude that a, = —2 (and b, = 2). Thus fi(z) =

(1jz)2 =z-2224322+... (and fo(z) = (1_2—2)2 = z+4 22> + 32 +...). Hence

&) ==y

We obtain that ﬂ Tc C T NTE, = {%}
GeT (1-2)

Now we prove that (1_2—2)2 € Tg forall G € 7. From [8] we know the Rogosin-

™

ski representation

(6) heT<=>h(z):ZpU p € Pg,

where Pg consists of all analytic functions p such that Rep(z) > 0, p(0) = 1 and
having real coefficients. From (6) and the fact that p € Pr <= % € Pr we get

1
W = 1 2)h(z) < ®

2
Let f(z) = %5 ﬁ = (1_Z—Zz> h(l—z) From the above relations f € T <= h e T.

From Theorem 4 we get

T = {(1+Z) \/z2G(z) f(z): fGT} = {(1+Z)2 h(z) f(z) : feT},

Z Z

where h(z) = Y ffz(z). From (3) we know thath € T.

2
For f(z) = (ﬁ) ﬁ we know that the function @ h(z) f(z) = (1_22)2 is

in 7g. n

3 Some properties of the class 7;;.

Let us consider the class 7, where G(z) = z. Denote this class by 7;;. Then
He Ty < H(z) =+/zF(z), F € T. Hence

zH'(z) 1 (zF(z)
) (G2 ), rer

From (7) and Corollary 1 we have

zH'(z) z F'(z) 1—6r+712 2—6r
2R =R 1) > ———
¢ H(z) e( F(z) ) S 1—12
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zH'(z)
H(z)

forz € A, v = |z|. Therefore, Re

Observe that minRe (ZFF(I—S)> is reached by the function F given in Corollary 1,

thus min Re (Z ggi?) is reached by the function Hy(z) = ?il_jg forz = —r.

Furthermore, we have H|, (—%) = 0. This implies 71 ;(7;4) < }—%‘ = % From

>0for0 <r< % So rs7(Tig) > %

these and (4) we get inequalities % <rsr(Tw) <ru(Ty) < %, which finally lead
us to equalities rs7(7ia) = rs(Tia) = rou(Tia) = 3.
We have proved the following theorem.

Theorem 6. rs7(Tiy) = rs(Tia) = rou(Ti) = 3.

4 Some properties of the class 7; for G(z) = (1_22)2.

zF(z)
1—z 7

Let us study 7, where G(z) = (1_22)2. Thus H € T <= H(z) =
F € T. Therefore

zH'(z) 1<ZF’(Z) 14z

®) T2 F(z) +1—z

i) 5 ) FeT.

Taking into account (8) and Corollary 1 we obtain

zH'(z) zF'(z) 14z
2R = R
“Hi) e<F(z) L
1—6r—|—r2+1—r_2(1—4r—|—r2)
1—12 1+r  1—-12 7
zH'(z)

forz € A, r = |z|. Then, Re ) > 0for 0 < r < 2—+/3. Hence rsr(7g) >

2 — /3. Since minRe (ZF/(Z)> is reached by the function F given in Corollary 1,

F(z)
z g(’i?) is reached by the function Hy(z) = al_*;g

Moreover, H), (—2 + \/§> = 0. Thus ry(7Tg) < ‘—2 + \/5‘ = 2 — /3. The

inequality (4) and the above facts give us 2 — v/3 < rs7(7g) < rru(Ts) < 2—+/3,
so finally rs(7¢) = rs(Tg) = rou(Tg) =2 — V3.

We have proved the following theorem.

so min Re ( forz = —r.

Theorem 7. For G(z) = (1_%)2 we have rs7(Tg) = rs(Tg) = rou(Ts) =2 — /3.

5 Some properties of the class 7; for G(z) = a fz)z-

Let us investigate the class 7, where G(z) = (14;2—2)2 Hence from Theorem 4 we

get the following theorem.
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Theorem 8. For G(z) = (1+Z—z)2 we have Tg = T.

Theorem 8 and also [1] and [4] give us the following corollary.

Corollary 3. For G(z) = (1j—2)2 have:

(i) rST(TG) = 1”5(72;) = VLU(TG) = \/E— 1.

m)Guﬂﬁﬂ:{zeA:ﬂﬂ<:H+zﬂ}:{zﬂz+ﬂ<x@}ﬂ{zﬂz—ﬂ<x@}

6 Some properties of the class 7 for G(z) =

z(142)?
(1-z)*

Let us consider 7, where G(z) = . This implies H € 75 <= H(z) =

%\gf_@, F € T. Therefore

zH'(z) 1 <zF’(z) 1+ 6z + 22

©) T2 F(z) 1— 22

() 5 ) FeT.

Relation (9) and Corollary 1 give us

2 Re

zH'(z) _ Re(zF’(z) 1+6z+zz)

H(z) F(z) 1—22
1—6r+1? 1—6r—|—r2_21—6r—|—r2
- 112 1—r2 7 1—92 7

forz € A r = |z|. Thus, Re* T > 0for0 < r < 3-2V2 = (V2-1)%

Therefore rs7(7¢) > (/2 — 1)2. Due to the fact that min Re (Z Fz) ) is reached by

F(z)
zH'(z)
H(z)

the function F given in Corollary 1, so min Re ( ) is reached by the function

G(z) = 22, forz = —r (G € To).

Apart from these, G’ (—3—|—2\/§) = 0. Then r y(Tg) < ’—3—!—2\/5’ =3-—
2v/2 = (v/2 — 1)2. From these and (4) we get inequalities (v/2 — 1)? < rs7(Tg) <
reu(Te) < (V2 —=1)% so finally rsr(7Tc) = r5(Tc) = ru(T6) = (V2 —1)%

We have proved the following theorem.

Theorem 9. For G(z) = Z((lljzz))j we have rs7(Tg) = r5(Tg) = ru(Ts) = (V2 —1)%



On Semi-Typically Real Functions ...

7 Some properties of the class 7; for G(z) = z(1 +z)?.

89

Let us study the class 75, where G(z) = z(1 +z)2. Thus, H € Tg <= H(z) =

(1+2)\/zF(z), F € T. Then

zH'(z) 1 (zP’(z) 143z

(19) T2 F(z) 1+z

H(z) 5 ) FeT.

Taking into account (10) and Corollary 1 we conclude

zH'(z) zF'(z) 143z
2Re=—~L = R
“H() (Fe +15s)
1—6r+r> 1-3r _1—4r—r

- 1-12 1—r = 1—-12 7

forz € A, r = |z|. Therefore, Rezgé‘;)
\/5 — 2. Since minRe (ZF (z)

F(z)
z gé?) is reached by the function Hy(z)

_ z(142)?
 (1-2)2

then min Re (

forz = —r.

> 0for 0 < r < /5 — 2. Hence rs7(Tg) >
) is reached by the function F given in Corollary 1,

Moreover, H (2 — \/5> = 0. This implies rry(7Tg) < ’2 \/5’ = 5 -2.

From these and (4) we have V5 — 2 < rs7(7g) < ru(7g) < V5 —2. These

finally lead us to equalities rs7(75) = rs(7g) = rru(7s) = V5 — 2.
We have proved the following theorem.

Theorem 10. For G(z) = z(1 + z)? we have r¢7(T¢) = r5(T5) = rru(Te) = V/5 —

2.
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