On the classification of rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for dim < 8

Mamoru Mimura Hiroo Shiga

Abstract

We classify rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for dim < 8.

1 Introduction

Throughout the paper we consider connected, simply connected spaces.

Definition 1.1. A space X is said to be *elliptic* if $\dim \pi_*(X) \otimes \mathbb{Q} < \infty$ and $\dim H^*(X;\mathbb{Q}) < \infty$.

$$\chi_{\pi}(X) = \sum_{p} (-1)^{p} \dim \pi_{p}(X) \otimes \mathbb{Q}$$
 is called the *homotopy Euler characteristic*; $\chi_{c}(X) = \sum_{p} (-1)^{p} \dim H^{p}(X;\mathbb{Q})$ is called the *(cohomology) Euler characteristic*.

Then in general there hold

$$\chi_{\pi}(X) \leq 0$$
 and $\chi_{c}(X) \geq 0$.

Furthermore it is shown in [Ha, Theorem 1, p.175] that the following conditions are equivalent:

(1)
$$\chi_{\pi}(X) = 0$$
, (2) $\chi_{c}(X) > 0$, (3) $H^{*}(X; \mathbb{Q})$ is evenly graded,

Received by the editors December 2010.

Communicated by Y. Félix.

2000 Mathematics Subject Classification: 55P62.

Key words and phrases: Classification, rational homotopy types, elliptic space.

and that $H^*(X;\mathbb{Q})$ is a polynomial algebra truncated by a Borel ideal in this case. The purpose of this paper is to classify the rational homotopy types of elliptic spaces with $\chi_{\pi}(X) = 0$ for dim $H^*(X;\mathbb{Q}) < 8$.

By the dimension formula (2.2), the cohomology algebra of such a space is isomorphic to either $\mathbb{Q}[x_1]/(f_1)$ or $\mathbb{Q}[x_1,x_2]/(f_1,f_2)$ as a graded algebra, where (f_1,f_2) is the ideal generated by a regular sequence $\{f_1,f_2\}$, and hence the rational homotopy types of this kind are intrinsically *formal*, that is, two spaces with the isomorphic rational cohomology algebras are rationally homotopy equivalent. Thus, for our purpose, it is sufficient to classify graded algebras of the type $\mathbb{Q}[x_1,x_2]/(f_1,f_2)$.

M.R.Hilali tried in his thesis [Hi] to classify such elliptic rational homotopy types whose dimension of the cohomology algebra is not greater than 6. However his argument seems to be incorrect. Correcting it is a starting point of our work [MS]; in fact, there are infinitely many non-isomorphic Q-algebras *A* such that

$$A \otimes_{\mathbb{Q}} \overline{\mathbb{Q}} \cong \overline{\mathbb{Q}}[x_1, x_2]/(x_1^2, x_2^2).$$

Let X be a graded algebra over $\mathbb Q$ and K a Galois extension of $\mathbb Q$. A graded algebra Y over $\mathbb Q$ is said to be a $K/\mathbb Q$ form if Y becomes isomorphic to X when the ground field is extended to K. The set of $\mathbb Q$ -isomorphism classes of X forms a set $E(K/\mathbb Q,X)$. It is known that the set $E(K/\mathbb Q,X)$ corresponds bijectively to the Galois cohomology $H^1(\mathrm{Gal}(K/\mathbb Q),A(K))$, where A(K) denotes the group of K-automorphisms of X (see $[\mathbb W]$, p.136).

Our result of classifying them is given as follows:

Theorem 1.2. Let A be the cohomology algebra of an elliptic space with $\chi_{\pi} = 0$. If dim $H^*(X; \mathbb{Q}) < 8$, then A is isomorphic to one of the following:

```
dim
         isomorphic classes of graded algebras
  1
         \mathbb{O}
  2
         {Q[x]/(x^2), |x| = 2n \mid n \in \mathbb{N}}
         {\mathbb{Q}[x]/(x^3), |x| = 2n \mid n \in \mathbb{N}}
  3
         {\mathbb Q}[x]/(x^4), |x| = 2n \mid n \in \mathbb{N}\},
  4
         \{\mathbb{Q}[x_1,x_2]/(x_1^2+ax_2^2,x_1x_2), |x_1|=|x_2|=2n \mid a\in\mathbb{Q}^\times/\mathbb{Q}^{\times 2}, n\in\mathbb{N}\},
         \{\mathbb{Q}[x_1,x_2]/(x_1^2,x_2^2), |x_1|=2n, |x_2|=2m \mid (n,m) \in \mathbb{N}^2, n \neq m\}
  5
         {\mathbb Q}[x]/(x^5), |x| = 2n \mid n \in \mathbb{N}\},
         \{\mathbb{Q}[x_1, x_2]/(x_1x_2, x_1^3 + x_2^2), |x_1| = 4n, |x_2| = 6n \mid n \in \mathbb{N}\}
  6
         {\mathbb Q}[x]/(x^6), |x| = 2n \mid n \in \mathbb{N}\},
         \{\mathbb{Q}[x_1,x_2]/(x_1^2+ax_2^2,sx_1^3+tx_1^2x_2),|x_1|=|x_2|=2n\mid (a,[s,t])\in T,n\in\mathbb{N}\},
         {Q[x_1, x_2]/(x_1^2, x_2^3), |x_1| = 2n, |x_2| = 2m \mid (n, m) \in \mathbb{N}, n \neq m},
         \{\mathbb{Q}[x_1, x_2]/(x_1x_2, x_2^2 + ax_1^4), |x_1| = 2n, |x_2| = 4n \mid n \in \mathbb{N}, a \in \mathbb{Q}^{\times}/\mathbb{Q}^{\times 2}\}
         {\mathbb Q}[x]/(x^7), |x| = 2n \mid n \in \mathbb{N}\},
         \{\mathbb{Q}[x_1,x_2]/(x_1^3+x_2^2,x_1^2x_2), |x_1|=4n, |x_2|=6n \mid n \in \mathbb{N}\},
         {\mathbb Q}[x_1,x_2]/(x_1x_2,x_1^5+x_2^2), |x_1|=4n, |x_2|=10n \mid n\in\mathbb N\},
         {Q[x_1, x_2]/(x_1x_2, x_1^4 + x_2^3), |x_1| = 6n, |x_2| = 8n | n \in \mathbb{N}}
```

The set *T* in the table is defined as follows. Let

$$P^{1}(\mathbb{Q}) = \mathbb{Q} \times \mathbb{Q} - \{(0,0)\}/\sim,$$

where $(t_1, s_1) \sim (t_2, s_2)$ if and only if there is an element $r \in \mathbb{Q}^\times$ such that $rt_1 = t_2$ and $rs_1 = s_2$. Set $M_1 = \mathbb{Q}^\times \times P^1(\mathbb{Q})$ and $M_2 = \mathbb{Q}^{\times 2} \times P^1(\mathbb{Q})$. We define an equivalence relation \sim on $M_1 \setminus M_2$ as follows: $(\alpha_1, [s_1, t_1]) \sim (\alpha_2, [s_2, t_2])$ if and only if the following (1) and (2) are satisfied:

1. $\alpha_1 \cdot \alpha_2 \in \mathbb{Q}^{\times 2}$; (then the quadratic extensions $\mathbb{Q}(\sqrt{\alpha_1})$ and $\mathbb{Q}(\sqrt{\alpha_2})$ coincide, which we denote by \mathbb{K} .)

2.

$$\frac{t_2 - s_2 \sqrt{\alpha_2}}{t_2 + s_2 \sqrt{\alpha_2}} \cdot \frac{t_1 + s_1 \sqrt{\alpha_1}}{t_1 - s_1 \sqrt{\alpha_1}} \in \mathbb{K}_1^{\times 3},$$

where \mathbb{K}_1 consists of elements of \mathbb{K} whose norms are 1.

Let $\tilde{M}_2 = \{(r^2, [s, t]) \in M_2 \mid t \pm sr \neq 0\}$, and on \tilde{M}_2 we define an equivalence relation \sim as follows:

$$(r_1^2, [s_1, t_1]) \sim (r_2^2, [s_2, t_2]) \iff \frac{t_2 - s_2 r_2}{t_2 + s_2 r_2} \cdot \frac{t_1 + s_1 r_1}{t_1 - s_1 r_1} \in \mathbb{Q}^{\times 3}.$$

We set

$$T = (M_1 \backslash M_2) / \sim \cup \tilde{M}_2 / \sim .$$

Then an element $(\alpha, [s, t]) \in T$ corresponds to the isomorphism classes of the algebras

$$\mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha x_2^2, s x_1^3 + t x_1^2 x_2)$$

of regular type. (See the last paragraph of Section 5 for details.)

We denote by *B* and *C* the family given in the second line of dim 4 and 6 respectively:

$$B = \{ \mathbb{Q}[x_1, x_2] / (x_1^2 + ax_2^2, x_1x_2), |x_1| = |x_2| = 2n \mid a \in \mathbb{Q}^{\times} / \mathbb{Q}^{\times 2}, n \in \mathbb{N} \},$$

$$C = \{ \mathbb{Q}[x_1, x_2] / (x_1^2 + ax_2^2, sx_1^3 + tx_1^2x_2), |x_1| = |x_2| = 2n \mid (a, [s, t]) \in T, n \in \mathbb{N} \}.$$

All the elements of the family in B (resp. C) are isomorphic as $\overline{\mathbb{Q}}$ -algebra after tensoring $\overline{\mathbb{Q}}$ over \mathbb{Q} . However they give us a family of infinitely many non isomorphic \mathbb{Q} -algebras in dimensions 4 and 6 even when ignoring the gradings.

The spaces representing the algebras in the table above can be constructed as follows:

(1) The space X such that $H^*(X;\mathbb{Q}) \cong \mathbb{Q}[x]/(x^k)$; Let $\varphi: K(\mathbb{Q},|x|) \to K(\mathbb{Q},k|x|)$ be a map representing the element

$$x^k \in \mathbb{Q}[x] \cong H^*(K(\mathbb{Q},|x|);\mathbb{Q}).$$

Then *X* is given as the homotopy fibre of φ .

(2) The space X such that $H^*(X;\mathbb{Q}) \cong \mathbb{Q}[x_1,x_2]/(f_1,f_2)$, where (f_1,f_2) is the ideal generated by elements $f_i \in \mathbb{Q}[x_1,x_2]$; Let $\varphi_i : K(\mathbb{Q},|x_1|) \times K(\mathbb{Q},|x_2|) \to$

 $K(\mathbb{Q}, |f_i|)$ be a map representing the element $f_i \in \mathbb{Q}[x_1, x_2] \cong H^*(K(\mathbb{Q}, |x_1|) \times K(\mathbb{Q}, |x_2|); \mathbb{Q})$ for i = 1, 2 and let F be the homotopy fibre of φ_1 . Then X is given as the homotopy fibre of the composite map

$$\varphi_2 \circ i : F \to K(\mathbb{Q}, |x_1|) \times K(\mathbb{Q}, |x_2|) \to K(\mathbb{Q}, |f_2|),$$

where i is the inclusion of the fibre.

Our method to classify the algebras is based on the dimension formula (2.2) for n = 2:

$$\dim_{\mathbb{Q}} \mathbb{Q}[x_1, x_2] / (f_1, f_2) = |f_1| \cdot |f_2| / |x_1| \cdot |x_2|$$

due to Koszul, where $|x_i|$ and $|f_i|$ denote the degree of x_i and f_i respectively.

The present work is the revised version of [MS]. However there are no alterations in the results but some minor modifications in the expressions. During these past years, following our method in [MS], Kono-Tamamura obtain in [KT1] and [KT2] similar results in dimensions 10, 11, 13; their arguments are entirely the same as ours given in [MS].

The paper is organized as follows. In Section 2 we consider the case of dimensions 1, 2, 3; in Section 3 the case of dimension 4; in Section 4 the case of dimension 5; in Section 5 the case of dimension 6; in Section 6 the case of dimension 7.

Acknowledgement: We thank T.Yamaguchi for calling our attention to [Hi] and also N. Iwase, H. Komatu, T. Maeda and T. Tasaka for useful conversations while preparing the manuscript.

2 The case of dimensions 1, 2, 3

Let $\{f_1, \dots, f_n\}$ be a regular sequence of graded elements in a polynomial ring $\mathbb{Q}[x_1, \dots, x_n]$. We can assume that each f_i $(i = 1, \dots, n)$ has no constant or linear terms and that

$$(2.1) |x_1| \le \cdots \le |x_n|, |f_1| \le \cdots \le |f_n|.$$

Put $A = \mathbb{Q}[x_1, \dots, x_n]/(f_1, \dots, f_n)$. Then by the *dimension formula* (see [FHT; (32.14), p.446]), we have

(2.2)
$$\dim_{\mathbb{Q}} A = |f_1| \cdots |f_n| / |x_1| \cdots |x_n|.$$

Lemma 2.1.
$$2|x_i| \le |f_i|$$
 for $i = 1, \dots, n$.

Proof. We prove by induction on i. Since f_1 has no linear terms, we have $|f_1| \ge 2|x_1|$. As inductive hypothesis we assume that $2|x_i| \le |f_i|$ for $i = 1, \dots, k$. If $|x_k| = |x_{k+1}|$, then $|f_{k+1}| \ge |f_k| \ge 2|x_k| = 2|x_{k+1}|$. Let $|x_{k+1}| > |x_k|$ and suppose $|f_{k+1}| < 2|x_{k+1}|$. Then f_{k+1} is contained in the ideal $(x_{k+1}x_i \text{ for } i \le k, x_ix_j \text{ for } i, j \le k)$, and hence we see that $f_{k+1} \in (x_1, \dots, x_k)$, the ideal generated by $\{x_1, \dots, x_k\}$. Thus f_1, \dots, f_{k+1} are all contained in the ideal (x_1, \dots, x_k) , that is, $(f_1, \dots, f_{k+1}) \subset (x_1, \dots, x_k)$. Then, for (any irreducible component of) varieties of $\overline{\mathbb{Q}}$ -points, we have

$$V(f_1,\cdots,f_{k+1})\supset V(x_1,\cdots,x_k),$$

where

$$V(f_1,\dots,f_{k+1}) = \{\mathbf{x} \in \overline{\mathbb{Q}}^n | f_i(\mathbf{x}) = 0, \quad 1 \le i \le k+1 \},$$

$$V(x_1,\dots,x_k) = \{\mathbf{x} \in \overline{\mathbb{Q}}^n | x_i = 0, \quad 1 \le i \le k \}.$$

Hence we have

$$\dim V(f_1,\cdots,f_{k+1}) \ge \dim V(x_1,\cdots,x_k) = n-k,$$

which contradicts the fact that $\{f_1, \dots, f_{k+1}\}$ is a regular sequence.

Combining (2) and Lemma 2.1, we have

$$\dim_{\mathbb{Q}} A \ge 2^n.$$

If $\dim_{\mathbb{Q}} A = 1$, then n = 0 and $A \cong \mathbb{Q}$. If $\dim_{\mathbb{Q}} A = 2$, then n = 1 and $A \cong \mathbb{Q}[x]/(x^2)$. If $\dim_{\mathbb{Q}} A = 3$, then n = 1 and $A \cong \mathbb{Q}[x]/(x^3)$.

3 The case of dimension 4

Let A be the cohomology algebra of an elliptic space with $\chi_{\pi}=0$ such that $\dim_{\mathbb{Q}} A=4$. Then n=1 or 2 in (2). If n=1, then $A\cong\mathbb{Q}[x]/(x^4)$. If n=2, then it follows from Lemma 2.1 and (2.2) that

$$|f_1| = 2|x_1|, \quad |f_2| = 2|x_2|.$$

If $|x_1| < |x_2|$, then $(f_1) = (x_1^2)$, and f_2 is of the following form:

$$f_2 = ax_2^2 + bx_1^{k_1}x_2 + cx_1^{k_2}$$

with $a \neq 0$, where $k_2 > k_1 \geq 2$. Hence we obtain that

$$(f_1, f_2) = (x_1^2, x_2^2).$$

If $|x_1| = |x_2|$, then we may set

$$f_1 = ax_1^2 + bx_1x_2 + cx_2^2$$
, $f_2 = dx_1^2 + ex_1x_2 + fx_2^2$ $(a, b, c, d, e, f \in \mathbb{Q})$.

If a = c = 0, then $(f_1, f_2) = (x_1x_2, x_1^2 + \alpha x_2^2)$, where $\alpha = \frac{f}{d} \in \mathbb{Q}^{\times}$. If $a \neq 0$, by setting $a\left(x_1 + \frac{b}{2a}x_2\right) = u_1$, we have

$$f_1 = u_1^2 + \alpha x_2^2$$
, $\alpha = \frac{4ac - b^2}{4a}$.

By using f_1 , we obtain the form $(f_1,f_2)=(u_1^2+\alpha x_2^2,gu_1x_2+hx_2^2)$. If g=0, then we have $(f_1,f_2)=(u_1^2,x_2^2)$. If $g\neq 0$, we set $v_1=gu_1+hx_2$. Then $f_2=v_1x_2$; using f_2 we have $(f_1,f_2)=(v_1^2+\beta x_2^2,v_1x_2)$ for some $\beta\in\mathbb{Q}^\times$. The case $c\neq 0$ is similar. Thus we have shown the following

Lemma 3.1. Let f_1 and f_2 be homogeneous polynomials of degree 2. Then $\mathbb{Q}[x_1, x_2]/(f_1, f_2)$ is isomorphic to $\mathbb{Q}[x_1, x_2]/(x_1^2 + \alpha x_2^2, x_1 x_2)$ for some $\alpha \in \mathbb{Q}^{\times}$.

Remark. $\mathbb{Q}[x_1, x_2]/(x_1^2, x_2^2)$ is isomorphic to $\mathbb{Q}[x_1, x_2]/(x_1^2 + x_2^2, x_1x_2)$ as \mathbb{Q} - algebras.

Notation. $A_{\gamma} = \mathbb{Q}[x_1, x_2]/(x_1^2 + \gamma x_2^2, x_1 x_2)$ for $\gamma \in \mathbb{Q}^{\times}$.

Proposition 3.2. The algebras A_{α} and A_{β} $(\alpha, \beta \in \mathbb{Q}^{\times})$ are isomorphic if and only if $\alpha \cdot \beta^{-1} \in \mathbb{Q}^{\times 2}$.

Proof. Suppose that there is an isomorphism $\varphi: A_{\alpha} \to A_{\beta}$. Then we can set

$$\varphi(x_1) = p_1 x_1 + q_1 x_2, \quad \varphi(x_2) = p_2 x_1 + q_2 x_2 \qquad (p_i, q_i \in \mathbb{Q}).$$

Then we have

$$\varphi(x_1^2 + \alpha x_2^2) = (p_1^2 + \alpha p_2^2)x_1^2 + 2(p_1q_1 + \alpha p_2q_2)x_1x_2 + (q_1^2 + \alpha q_2^2)x_2^2,$$

$$\varphi(x_1x_2) = p_1p_2x_1^2 + (p_1q_2 + p_2q_1)x_1x_2 + q_1q_2x_2^2.$$

Since these elements are zero in A_{β} , we have $(p_1^2 + \alpha p_2^2)\beta = q_1^2 + \alpha q_2^2$ and $p_1p_2\beta = q_1q_2$. Thus we have

$$\alpha \beta^{-1} = (p_1/q_2)^2 \in \mathbb{Q}^{\times 2}.$$

Conversely, if $\alpha\beta^{-1} \in \mathbb{Q}^{\times 2}$, the map $\varphi : A_{\alpha} \to A_{\beta}$ defined by

$$\varphi(x_1) = x_1, \quad \varphi(x_2) = rx_2$$

gives an isomorphism φ , where r is an element of \mathbb{Q}^{\times} such that $r^2 = \alpha^{-1}\beta$.

4 The case of dimension 5

Let A be the cohomology algebra of an elliptic space with $\chi_{\pi}=0$ such that $\dim_{\mathbb{Q}} A=5$. Then n=1 or 2 in (2.2). If n=1, then $A\cong\mathbb{Q}[x]/(x^5)$. If n=2, then we have $|f_1|\cdot |f_2|=5|x_1|\cdot |x_2|$ in (2.2).

(a) Assume that $|f_1|$ is an integer multiple of $|x_1|$, that is, $|f_1| = k|x_1|$ for some integer $k \ge 2$. By Lemma 2.1 we have

$$2|x_2| \le |f_2| = \frac{5}{k}|x_2|.$$

Hence we have k=2. Then f_2 is contained in the ideal generated by x_1 . By regularity f_1 is not contained in the ideal (x_1) . Then $|f_1| = \ell |x_2|$ for some integer $\ell \geq 2$. Then we have

$$2|x_2| \le |f_1| = 2|x_1|.$$

Hence we have $|x_1| = |x_2|$. But this contradicts that $|f_2| = \frac{5}{2}|x_2|$.

(b) Assume that $|f_1|$ is an integer multiple of $|x_2|$, that is, $|f_1| = k|x_2|$ for some integer $k \ge 1$. Then by Lemma 2.1 we have

$$2|x_2| \le |f_2| = \frac{5}{k}|x_1| \le \frac{5}{k}|x_2|.$$

Thus we have k = 1 or 2.

If k = 1, then f_1 is a polynomial of x_1 since f_1 has no linear terms. But then $|f_1|$ is an integer multiple of $|x_1|$, which is impossible by (a).

If k = 2, then f_2 is contained in the ideal (x_2) , since $|f_2| = \frac{5}{2}|x_1|$. By regularity f_1 is not contained in the ideal (x_2) . This implies that $|f_1|$ is an integer multiple of $|x_1|$, which is impossible by (a).

(c) Thus $|f_1|$ is neither integer multiple of $|x_1|$ nor of $|x_2|$, that is, f_1 is contained in both (x_1) and (x_2) . Hence f_2 is an integer multiple of both $|x_1|$ and $|x_2|$, that is, $|f_2| = k_1|x_1| = k_2|x_2|$ for some integers $k_1, k_2 \ge 2$. Then from the inequality

$$2|x_1| \le |f_1| = \frac{5}{k_2}|x_1| \le \frac{5}{k_2}|x_2|,$$

we deduce $k_2 = 2$. If $k_1 = 2$, then $|x_1| = |x_2|$, and so $|f_1|$ is an integer multiple of $|x_1|$. This contradicts the assumptions. Thus $k_1 \ge 3$. Then we have

$$\frac{5}{2}|x_1| = |f_1| \ge |x_1| + |x_2| = |x_1| + \frac{k_1}{2}|x_1|,$$

which implies that $k_1 = 3$. Then we have

$$|f_1| = |x_1| + |x_2|, \quad |f_2| = 2|x_2|, \quad 3|x_1| = 2|x_2|.$$

Thus the only possibility is that

$$(f_1, f_2) = (x_1 x_2, x_1^3 + \alpha x_2^2), \qquad \alpha \in \mathbb{Q}^{\times}.$$

Proposition 4.1. For any $\alpha, \beta \in \mathbb{Q}^{\times}$, there is a graded algebra isomorphism

$$\varphi: \frac{\mathbb{Q}[x_1, x_2]}{(x_1 x_2, x_1^3 + \alpha x_2^2)} \longrightarrow \frac{\mathbb{Q}[x_1, x_2]}{(x_1 x_2, x_1^3 + \beta x_2^2)}.$$

Proof. Since $|x_1| < |x_2|$, the graded map is of the following form:

$$\varphi(x_1) = p_1 x_1, \quad \varphi(x_2) = q_2 x_2$$

for some $p_1, q_2 \in \mathbb{Q}^{\times}$. This correspondence φ defines an isomorphism if and only if $p_1^3\beta = \alpha q_2^2$. Hence by setting $p_1 = q_2 = \alpha \beta^{-1} \in \mathbb{Q}^{\times}$, we obtain the desired isomorphism.

5 The case of dimension 6

Let A be the cohomology algebra of an elliptic space with $\chi_{\pi}=0$ such that $\dim_{\mathbb{Q}} A=6$. Then n=1 or 2 in (2). If n=1, then $A\cong\mathbb{Q}[x]/(x^6)$. So we let n=2 for rest of the section.

First we consider the case $|x_1| < |x_2|$.

(a) Assume that $|f_1|$ is an integer multiple of $|x_2|$, that is, $|f_1| = k|x_2|$ for some integer $k \ge 1$. Then we have

$$2|x_2| \le |f_2| = \frac{6}{k}|x_1| < \frac{6}{k}|x_2|$$

which implies that k = 1 or 2.

If k = 1, then $f_1 = x_1^m$ and $|x_2| = m|x_1|$ with $m \ge 2$. By the dimension formula (2.2) for n = 2 we have

$$|f_2| = \frac{6}{m}|x_2|.$$

As f_2 is not contained in the ideal (x_1) , we deduce that $|f_2|$ is an integer multiple of $|x_2|$. Hence m = 2 or 3. If m = 2, then $(f_1, f_2) = (x_1^2, x_2^3)$ with $|x_2| = 2|x_1|$. If m = 3, then $(f_1, f_2) = (x_1^3, x_2^3)$.

If k=2, then $|f_1|=2|x_2|$ and $|f_2|=3|x_1|$. Hence we have $|x_1|<|x_2|\leq \frac{3}{2}|x_1|$. Suppose $|x_1|<|x_2|<\frac{3}{2}|x_1|$. Then, since we have $|x_1|+|x_2|<2|x_2|=|f_1|<3|x_1|=|f_2|<2|x_1|+|x_2|$, we can deduce

$$(f_1, f_2) = (x_2^2, x_1^3).$$

Suppose $|x_2| = \frac{3}{2}|x_1|$. Then we have

$$f_1 = ax_1^3 + bx_2^2$$
, $f_2 = cx_1^3 + dx_2^2$

for some $a, b, c, d \in \mathbb{Q}$ satisfying $ad - bc \neq 0$. Hence $(f_1, f_2) = (x_1^3, x_2^2)$.

(b) Assume that $|f_1|$ is an integer multiple of $|x_1|$ and not of $|x_2|$, that is, $|f_1| = k|x_1|$ for some integer $k \ge 2$. If $k \ge 4$, then $|f_2| \le \frac{3}{2}|x_2|$ and $|f_1|$ is an integer multiple of $|x_2|$, which is not allowed. Hence k = 2 or 3.

If k = 2, then $|f_1| = 2|x_1|$ and $|f_2| = 3|x_2|$. Thus we have

$$(f_1, f_2) = (x_1^2, x_2^3).$$

If k = 3, then $|f_1| = 3|x_1|$ and $|f_2| = 2|x_2|$. If $|x_2| \neq 2|x_1|$, we see $(f_1, f_2) = (x_1^3, x_2^2)$.

If $|x_2| = 2|x_1|$, then we have

$$(f_1, f_2) = (ax_1^3 + bx_1x_2, cx_2^2 + dx_1^4)$$

for some $a, b, c, d \in \mathbb{Q}$ such that $a^2c + b^2d \neq 0$ and $c \neq 0$.

Proposition 5.1. The graded algebras $\mathbb{Q}[x_1, x_2]/(ax_1^3 + bx_1x_2, cx_2^2 + dx_1^4)$, where $a, b, c, d \in \mathbb{Q}$, such that $a^2c + b^2d \neq 0$ and that $c \neq 0$ are isomorphic to one of the following

$$\mathbb{Q}[x_1, x_2]/(x_1x_2, x_2^2 + \alpha x_1^4)$$
 with $\alpha \in \mathbb{Q}^{\times}$, $\mathbb{Q}[x_1, x_2]/(x_1^3, x_2^2)$.

Moreover $\mathbb{Q}[x_1, x_2]/(x_1x_2, x_2^2 + \alpha x_1^4)$ and $\mathbb{Q}[x_1, x_2]/(x_1x_2, x_2^2 + \beta x_1^4)$ are isomorphic if and only if $\alpha^{-1} \cdot \beta \in \mathbb{Q}^{\times 2}$.

Proof. If $b \neq 0$, we set $ax_1^2 + bx_2 = X_2$. Then

$$(f_1, f_2) = (x_1 X_2, \frac{c}{b^2} X_2^2 + (\frac{a^2 c}{b^2} + d) x_1^4)$$

$$= (x_1 X_2, X_2^2 + \alpha x_1^4), \text{ where } \alpha = \frac{a^2 c + b^2 d}{c} \in \mathbb{Q}^{\times}.$$

The second part of the proposition follows from an easy calculation.

If b = 0, then they are isomorphic to $\mathbb{Q}[x_1, x_2]/(x_1^3, x_2^2)$.

(c) If $|f_1|$ is not an integer multiple of $|x_1|$ and not of $|x_2|$, then by the regularity $|f_2|$ is an integer multiple of $|x_2|$. Let $|f_2| = k|x_2|$ for some integer $k \ge 2$. Then $|f_1| = \frac{6}{k}|x_1|$ and $k \le 3$. Hence k = 2 or 3, and so we have $|f_1| = 2|x_1|$ or $3|x_1|$, which is not allowed.

The case n = 2 and $|x_1| < |x_2|$ can be summarized as follows.

Proposition 5.2. The set of isomorphism classes of graded algebras of dimension 6 with n = 2 satisfying the condition $|x_1| \neq |x_2|$ are

$$\{\mathbb{Q}[x_1, x_2]/(x_1^2, x_2^3), |x_1| = 2n, |x_2| = 2m \mid (n, m) \in \mathbb{N}^2, n \neq m\},$$
$$\{\mathbb{Q}[x_1, x_2]/(x_1 x_2, x_2^2 + \alpha x_1^4), |x_1| = 2n, |x_2| = 4n \mid n \in \mathbb{N}, \alpha \in \mathbb{Q}^\times/\mathbb{Q}^{\times 2}\}.$$

We consider the case $|x_1| = |x_2|$. Then f_1 and f_2 are homogeneous polynomials of degree 2 and 3 respectively. As in Lemma 3.1, we may set

$$f_1 = x_1^2 - \alpha x_2^2, \qquad \alpha \in \mathbb{Q}.$$

By the same way as in Proposition 3.2, we have the following: If there is an isomorphism

$$\mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_1 x_2^2, f_2) \longrightarrow \mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_2 x_2^2, f_2'),$$

then we have

(1)
$$\alpha_1 = \alpha_2 = 0 \text{ or (2) } \alpha_1 \cdot \alpha_2 \in \mathbb{Q}^{\times 2}$$
.

For the case (1), we have isomorphisms

$$\mathbb{Q}[x_1, x_2](x_1^2, f_2) \cong \mathbb{Q}[x_1, x_2](x_1^2, x_2^3 + ax_1x_2^2) \cong \mathbb{Q}[x_1, x_2]/(x_1^2, x_2^3).$$

Next we consider the case (2). Assume that $\alpha_1 \in \mathbb{Q}^{\times}$ and $\alpha_1 \notin \mathbb{Q}^{\times 2}$ and that there is an isomorphism

$$\varphi: \mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_1 x_2^2, f_1) \longrightarrow \mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_2 x_2^2, f_2)$$

defined by

$$\varphi(x_1) = px_1 + qx_2, \quad \varphi(x_2) = rx_1 + sx_2$$

with $p,q,r,s \in \mathbb{Q}^{\times}$. Then $pq = \alpha_1 rs$ and

$$-\alpha_2 = \frac{q^2 - s^2 \alpha_1}{p^2 - r^2 \alpha_1} = -\frac{qs}{rp}, \text{ so } \alpha_1 \cdot \alpha_2 = \left(\frac{q}{r}\right)^2 \in \mathbb{Q}^{\times 2}.$$

The case that one of p, q, r, s is zero is similar.

So we set $\alpha_2 = r^2 \alpha_1$ for some $r \in \mathbb{Q}^{\times}$. The polynomials f_2 , f'_2 can be chosen as

$$f_2 = s_1 x_1^3 + t_1 x_1^2 x_2, \quad f_2' = s_2 x_1^3 + t_2 x_1^2 x_2$$

with some $s_i, t_i \in \mathbb{Q}$ (i = 1, 2). Set

(5.3)
$$X_1 = x_1 + \sqrt{\alpha_1}x_2, \quad X_2 = x_1 - \sqrt{\alpha_1}x_2.$$

Let $\mathbb{K} = \mathbb{Q}(\sqrt{\alpha_1})$ be the quadratic field. Then we have an isomorphism

$$\mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_1 x_2^2, f_1) \underset{\mathbb{Q}}{\otimes} \mathbb{K} \cong \mathbb{K}[X_1, X_2]/(X_1 X_2, \bar{f}_1),$$

where $\bar{f}_1=(t_1+s_1\sqrt{\alpha_1})X_1^3+(-t_1+s_1\sqrt{\alpha_1})X_2^3$. Hence φ induces an isomorphism

$$\overline{\varphi}: \mathbb{K}[X_1, X_2]/(X_1X_2, X_1^3 + a_1X_2^3) \longrightarrow \mathbb{K}[X_1, X_2]/(X_1X_2, X_1^3 + a_2X_2^3),$$

where $a_1 = \frac{-t_1 + s_1\sqrt{\alpha_1}}{t_1 + s_1\sqrt{\alpha_1}}$ and $a_2 = \frac{-t_2 + s_2r\sqrt{\alpha_1}}{t_2 + s_2r\sqrt{\alpha_1}}$. Remark here that $a_1a_2 \neq 0$ by the regularity of the ideals appearing in the above.

Let

$$\overline{\varphi}(X_i) = p_i X_1 + q_i X_2, \ p_i, q_i \in \mathbb{K}$$

for i = 1, 2. We have $p_1p_2 = 0$ and $q_1q_2 = 0$, since $\overline{\varphi}(X_1X_2) \in (X_1X_2)$. Thus $p_2 = q_1 = 0$ or $p_1 = q_2 = 0$.

First, we consider the case $p_2 = q_1 = 0$. Then we have $p_1q_2 \neq 0$ and that

$$(5.4) a_2 a_1^{-1} = (q_2 p_1^{-1})^3.$$

It follows from (3) that

(5.5)
$$\overline{\varphi}(x_1) = \frac{1}{2} \{ (p_1 + q_2)x_1 + \sqrt{\alpha_1}(p_1 - q_2)x_2 \}, \\ \overline{\varphi}(x_2) = \frac{1}{2\sqrt{\alpha_1}} \{ (p_1 - q_2)x_2 + \sqrt{\alpha_1}(p_1 + q_2)x_2 \}.$$

Since $\overline{\phi}$ is defined over \mathbb{Q} , we have

$$p_1 + q_2 \in \mathbb{Q}$$
 and $(p_1 - q_2)\sqrt{\alpha_1} \in \mathbb{Q}$,

which implies that p_1 and q_2 are conjugate elements over \mathbb{Q} by the equalities (5.5). Then $q_2p_1^{-1}$ are of the form $u^{\sigma}u^{-1}$, where u^{σ} is the conjugate of $u \in \mathbb{K}^{\times}$

if we take $u = p_1$ and $q_2 = u^{\sigma}$. By Hilbert's Theorem 90 (see [M; p.93]), the set $\{u^{\sigma}u^{-1}|u\in\mathbb{K}^{\times}\}\$ coincides with the set $\mathbb{K}_{1}^{\times}=\{\gamma\in\mathbb{K}^{\times}|N_{\mathbb{K}}(\gamma)=1\}$, where $N_{\mathbb{K}}(\gamma)$ is the norm $c^2 - \alpha_1 d^2$ for the element $\gamma = c + d\sqrt{\alpha_1}$. It follows from the condition $a_2a_1^{-1} \in \mathbb{K}_1^{\times 3}$ that

(5.6)
$$\frac{t_2 - s_2 r \sqrt{\alpha_1}}{t_2 + s_2 r \sqrt{\alpha_1}} \cdot \frac{t_1 - s_1 \sqrt{\alpha_1}}{t_1 + s_1 \sqrt{\alpha_1}} \in \mathbb{K}_1^{\times 3}.$$

For the case $p_1 = q_2 = 0$, quite similarly to the above we have $p_2q_1 \neq 0$ and that

$$a_2a_1^{-1} = (q_1p_2^{-1})^3.$$

For the same reasons as the above, p_2 and q_1 are conjugate over Q. Hence we also have $a_2a_1^{-1} \in \mathbb{K}_1^{\times 3}$. Conversely, we have

Proposition 5.3. Let $(\alpha_i, [s_i, t_i])$ be elements of $M_1 \setminus M_2$ (i = 1, 2). If $(\alpha_1, [s_1, t_1])$ and $(\alpha_2, [s_2, t_2])$ are equivalent, then there is a graded algebra isomorphism

$$\overline{\varphi}: \mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_1 x_2^2, s_1 x_1^3 + t_1 x_1^2 x_2) \to \mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_2 x_2^2, s_2 x_1^3 + t_2 x_1^2 x_2^3).$$

(See the statement below Theorem 1.2 in Section 1 for the definitions of M_1 , M_2 and the equivalence relation.)

Proof. Since $(\alpha_1, [s_1, t_1])$ and $(\alpha_2, [s_2, t_2])$ are equivalent, there is $r \in \mathbb{Q}^{\times}$ so that $\alpha_2 = r^2 \alpha_1$, and we may set

$$\frac{t_1 + s_1 \sqrt{\alpha_1}}{t_1 - s_1 \sqrt{\alpha_1}} \cdot \frac{t_2 - s_2 r \sqrt{\alpha_1}}{t_2 + s_2 r \sqrt{\alpha_1}} = t^3, \ t \in \mathbb{K}^{\times}.$$

Then $t \in \mathbb{K}_1$. Again by Hilbert's Theorem 90, we may write

$$t = \frac{a + b\sqrt{\alpha_1}}{a - b\sqrt{\alpha_1}}, \ a, b \in \mathbb{Q}.$$

Let X_1 and X_2 be as in (5.3). We can define a \mathbb{K} -graded algebra map

$$\psi: \mathbb{K}[X_1, X_2] / (X_1 X_2, X_1^3 - \frac{t_1 - s_1 \sqrt{\alpha_1}}{t_1 + s_1 \sqrt{\alpha_1}} X_2^3) \longrightarrow \\ \mathbb{K}[X_1, X_2] / (X_1 X_2, X_1^3 - \frac{t_2 - s_2 r \sqrt{\alpha_2}}{t_2 + s_2 r \sqrt{\alpha_1}} X_2^3)$$

by

$$\psi(X_1) = (a + b\sqrt{\alpha_1})X_1, \ \psi(X_2) = (a - b\sqrt{\alpha_1})X_2$$

for some $a, b \in \mathbb{Q}$. Then we have

$$\psi(x_1) = \psi\left(\frac{X_1 + X_2}{2}\right) = \frac{1}{2} \{ (a + b\sqrt{\alpha_1})X_1 + (a - b\sqrt{\alpha_1})X_2 \}$$

$$= \frac{1}{2} \{ (a + b\sqrt{\alpha_1})(x_1 + \sqrt{\alpha_1}x_2) \}$$

$$+ (a - b\sqrt{\alpha_1})(x_1 - \sqrt{\alpha_1}x_2) \}$$

$$= ax_1 + b\alpha_1x_2,$$

$$\psi(x_2) = \psi\left(\frac{X_1 - X_2}{2\sqrt{\alpha_1}}\right) = \frac{1}{2\sqrt{\alpha_1}} \{ (a + b\sqrt{\alpha_1})(x_1 + \sqrt{\alpha_1}x_2) - (a - b\sqrt{\alpha_1})(x_1 - \sqrt{\alpha_1}x_2) \}$$

$$= bx_1 + ax_2.$$

Hence ψ is defined over Q. Thus we have a graded Q-algebra isomorphism

$$\overline{\psi}: \mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_1 x_2^2, s_1 x_1^3 + t_1 x_1^2 x_2) \longrightarrow \mathbb{Q}[x_1, x_2]/(x_1^2 - \alpha_2 x_2^2, s_2 x_1^3 + t_2 x_1^2 x_2).$$

Next we consider the case that $(\alpha_i, [s_i, t_i]) \in \tilde{M}_2$ (i = 1, 2). (For the definition of \tilde{M}_2 see Section 1.)

Proposition 5.4. *The two graded algebras*

$$\mathbb{Q}[x_1, x_2]/(x_1^2 - \gamma_1^2 x_2^2, s_1 x_1^3 + t_1 x_1^2 x_2)$$
 and $\mathbb{Q}[x_1, x_2]/(x_1^2 - \gamma_2^2 x_2^2, s_2 x_1^3 + t_2 x_1^3 x_2)$,

where $(\gamma_i^2, [s_i, t_i]) \in \tilde{M}_2$ (i = 1, 2), are isomorphic if and only if $(\alpha_1, [s_1, t_1])$ and $(\alpha_2, [s_2, t_2])$ are equivalent, that is,

$$\frac{t_2 - s_2 r_2}{t_2 + s_2 r_2} \cdot \frac{t_1 + s_1 r_1}{t_1 - s_1 r_1} \in \mathbb{Q}^{\times 3}.$$

Proof. By setting

$$y_1 = x_1 + r_1 x_2$$
, $y_2 = x_1 - r_1 x_2$,

the graded algebra over Q

$$\mathbb{Q}[x_1, x_2]/(x_1^2 - \gamma_1^2 x_2^2, s_1 x_1^3 + t_1 x_1^2 x_2)$$

is isomorphic to

$$\mathbb{Q}[y_1, y_2]/(y_1y_2, (t_1 + s_1r_1)y_1^3 + (-t_1 + s_1r_1)y_2^3).$$

Observe that there is an isomorphism

$$\varphi: \mathbb{Q}[y_1, y_2] / (y_1 y_2, (t_1 + s_1 r_1) y_1^3 + (-t_1 + s_1 r_1) y_2^3) \to \mathbb{Q}[y_1, y_2] / (y_1 y_2, (t_2 + s_2 r_2) y_1^3 + (-t_2 + s_2 r_2) y_2^3)$$

if and only if

$$\frac{t_2 - s_2 r_2}{t_2 + s_2 r_2} \cdot \frac{t_1 + s_1 r_1}{t_1 - s_1 r_1} \in \mathbb{Q}^{\times 3}.$$

In fact, if we set $\varphi(y_i) = p_i y_1 + q_i y_2$ for $p_i, q_i \in \mathbb{Q}$ (i = 1, 2), then $p_1 p_2 = 0$ and $q_1 q_2 = 0$. The condition $t \pm sr \neq 0$ in M_2 is equivalent to the one that the sequence $\{x_1^2 - r^2 x_2^2, sx_1^3 + tx_1^2 x_2\}$ is regular.

By Propositions 5.3 and 5.4 we have

Proposition 5.5. The set of isomorphism classes of graded algebras over \mathbb{Q}

$$\mathbb{Q}[x_1, x_2]/(x_1^2 + \alpha x_2^2, sx_1^2 + tx_1^2 x_2)$$

corresponds bijectively to the set

$$T = (M_1 \backslash M_2) / \sim \cup \tilde{M}_2 / \sim$$

In the case $\{0\} \times P^1(\mathbb{Q})$ it corresponds to the algebra

$$\mathbb{Q}[x_1, x_2]/(x_1^2, sx_2^3 + tx_2^2x_1) \cong \mathbb{Q}[x_1, x_2]/(x_1^2, x_2^3).$$

6 The case of dimension 7

Let A be the cohomology algebra of an elliptic space with $\chi_{\pi}=0$ such that $\dim_{\mathbb{Q}} A=7$. Then n=1 or 2 in (2). If n=1, then $A\cong \mathbb{Q}[x]/(x^7)$. If n=2, then $|f_1|\cdot |f_2|=7|x_1|\cdot |x_2|$.

(a) Assume that $|f_1|$ is an integer multiple of $|x_1|$, that is, $|f_1| = k|x_1|$ for some integer $k \ge 2$. Then k = 2 or 3.

If k = 2, then $|f_2| = \frac{7}{2}|x_2|$, which implies $f_2 \in (x_1)$. By regularity f_1 contains the term cx_2^2 , and hence $|x_1| = |x_2|$. This implies that $|f_2|$ is an integer multiple of $|x_2|$. This is a contradiction.

If k = 3, then $|f_2| = \frac{7}{3}|x_2|$ and $f_2 \in (x_1)$. Thus we have that $|f_1| = 2|x_2|$ and $|f_2| = \frac{7}{2}|x_1|$, which implies that $(f_1, f_2) = (x_1^3 + ax_2^2, x_1^2x_2)$, where $a \in \mathbb{Q}^{\times}$.

(b) Assume that $|f_1|$ is an integer multiple of $|x_2|$, that is, $|f_1| = k|x_2|$ for some integer $k \ge 1$. Then $|f_2| = \frac{7}{k}|x_1|$ and so $f_2 \in (x_2)$. This implies that $|f_1|$ is an integer multiple of $|x_1|$, and so we are reduced to the case (a).

(c) Assume that $|f_1|$ is neither an integer multiple of $|x_1|$ nor of $|x_2|$. Then $f_1 \in (x_1) \cap (x_2)$, and hence f_2 contains a non zero multiple of $x_1^{k_1}$ and $x_2^{k_2}$ for some integers k_1 , k_2 . Then

$$|f_2| = k_1|x_1| = k_2|x_2|$$

and $k_1 > k_2 \ge 2$.

If $k_2 \ge 4$, then $|f_1| \le \frac{7}{4}|x_1|$, which is impossible by Lemma 2.1.

Thus we can deduce that $k_2 = 2$ or 3.

(1) Let $k_2 = 2$. If $k_1 \ge 6$, then

$$|f_1| \ge |x_1| + |x_2| \ge \left(1 + \frac{k_1}{2}\right)|x_1| \ge 4|x_1|,$$

and hence we have by (2.2) for n = 2 that

$$|f_2|\leq \frac{7}{4}|x_2|,$$

which contradicts Lemma 2.1. Thus $k_1 = 3$ or 4 or 5.

If $k_1 = 3$, then

$$|f_1| = \frac{7}{3}|x_2| = \frac{7}{2}|x_1| > 3|x_1| = |f_2|.$$

This contradicts the assumption.

If $k_1 = 4$, then $|x_2| = 2|x_1|$ and $|f_1|$ is an integer multiple of $|x_1|$. This contradicts the assumption.

If
$$k_1 = 5$$
, then $|f_1| = \frac{7}{5}|x_2| = \frac{7}{2}|x_1| = |x_1| + |x_2|$. Then we have

$$(f_1, f_2) = (x_1 x_2, x_1^5 + a x_2^2), \qquad a \in \mathbb{Q}^{\times}.$$

(2) Let $k_2 = 3$. Then we have that

$$\frac{7}{3}|x_1| = |f_1| \ge |x_1| + |x_2| = \left(1 + \frac{k_1}{3}\right)|x_1|.$$

Since $k_1 > k_2$, we see that $k_1 = 4$ and $|f_1| = |x_1| + |x_2|$, which implies that

$$(f_1, f_2) = (x_1 x_2, x_1^4 + a x_2^3), \quad a \in \mathbb{Q}^{\times},$$

where $4|x_1| = 3|x_2|$.

Proposition 6.1. The isomorphism classes of the algebras

$$\mathbb{Q}[x_1, x_2]/(x_1^3 + ax_2^2, x_1^2x_2), \ \mathbb{Q}[x_1, x_2]/(x_1x_2, x_1^5 + ax_2^2), \ \mathbb{Q}[x_1, x_2]/(x_1x_2, x_1^4 + ax_2^3)$$

do not depend on the choice of $a \in \mathbb{Q}^{\times}$.

Proof. The correspondence

$$\varphi(x_1) = px_1, \quad \varphi(x_2) = qx_2 \qquad (p, q \in \mathbb{Q}^\times)$$

defines an isomorphism

$$\mathbb{Q}[x_1, x_2]/(x_1^3 + ax_2^2, x_1^2x_2) \longrightarrow \mathbb{Q}[x_1, x_2](x_1^3 + bx_2^2, x_1^2x_2)$$

if and only if $p^3b = q^2a$. Hence, if we take $p = q = ab^{-1}$, we obtain the desired isomorphism. The cases of the other algebras can be similarly proved.

References

- [FHT] Y. Félix, S. Halperin and J.C. Thomas: Rational Homotopy Theory, GTM **205**, Springer-Verlag (2001).
- [Ha] S. Halperin: Finiteness in the minimal models of Sullivan, Trans. AMS, **230**(1977), 173-199.
- [Hi] M. R. Hilali : Classification des types d'homotopies rationnelles des espaces X elliptiques, 1-connexes et dim $H^*(X, \mathbb{Q}) \leq 6$, Rapport-Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée, **146**(1988), 179-195.
- [KT1] S. Kono and A. Tamamura : Graded commutative Q-algebra $\mathbb{Q}[x_1, \dots, x_m]/(f_1, \dots, f_n)$ of dimension 10 over Q, Bull. Okayama Univ. of Science, **36** A(2000), 11-18.
- [KT2] S. Kono and A. Tamamura: Elliptic graded commutative Q-algebras of dimension 11 and 13 over Q, Bull. Okayama Univ. of Science, **37** A(2001), 29-34.
- [MS] M. Mimura and H. Shiga: On the classification of rational homotopy types of elliptic spaces with homotopy Euler characteristic zero for dim ≤ 7 , preprint (1997).

- [M] P. Morandi: Field and Galois Theory, GTM 167, Springer-Verlag (1996).
- [W] W. C. Waterhouse: Introduction to Affine Group Schemes, GTM 66, Springer-Verlag (1979).

Department of Mathematics, Faculty of Science Okayama University; 3-1-1 Tsushima-Naka, Okayama 700-8530, Japan email:mimura@math.okayama-u.ac.jp

Department of Mathematical Sciences, Faculty of Science University of Ryukyus; Nishihara-cho, Okinawa 903-0213, Japan email:shiga@sci.u-ryukyu.ac.jp