On the classification of rational homotopy types
of elliptic spaces with homotopy Euler
characteristic zero for dim < 8

Mamoru Mimura Hiroo Shiga

Abstract

We classify rational homotopy types of elliptic spaces with homotopy Eu-
ler characteristic zero for dim < 8.

1 Introduction

Throughout the paper we consider connected, simply connected spaces.

Definition 1.1. A space X is said to be elliptic if dim 7,(X) ® Q < oo and
dim H*(X; Q) < co.
xn(X) =) (—1)P dim 7, (X) ® Q is called the homotopy Euler characteristic;

p
xe(X) =) (—1)P dim HP(X; Q) is called the (cohomology) Euler characteristic.

p

Then in general there hold
x=(X) <0 and xc(X) > 0.

Furthermore it is shown in [Ha, Theorem 1, p.175] that the following conditions

are equivalent:
D x=(X) =0, (2)x(X) >0, (3)H*(X;Q)isevenly graded,
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and that H*(X; Q) is a polynomial algebra truncated by a Borel ideal in this case.

The purpose of this paper is to classify the rational homotopy types of elliptic
spaces with x(X) = 0 for dim H*(X; Q) < 8.

By the dimension formula (2.2), the cohomology algebra of such a space is
isomorphic to either Q[x1]/(f1) or Q[x1,x2]/(f1, f2) as a graded algebra, where
(f1, f2) is the ideal generated by a regular sequence { f1, 2}, and hence the ratio-
nal homotopy types of this kind are intrinsically formal, that is, two spaces with
the isomorphic rational cohomology algebras are rationally homotopy equiva-
lent. Thus, for our purpose, it is sufficient to classify graded algebras of the type

Qlx1, %2]/ (f1, f2)-

M.R Hilali tried in his thesis [Hi] to classify such elliptic rational homotopy
types whose dimension of the cohomology algebra is not greater than 6. However
his argument seems to be incorrect. Correcting it is a starting point of our work
[MS]; in fact, there are infinitely many non-isomorphic Q-algebras A such that

A %@ 2 Q[x1, x2]/ (x, 23)-

Let X be a graded algebra over Q and K a Galois extension of Q. A graded
algebra Y over Q is said to be a K/Q form if Y becomes isomorphic to X when
the ground field is extended to K. The set of Q-isomorphism classes of X forms
a set E(K/Q, X). It is known that the set E(K/Q, X) corresponds bijectively to
the Galois cohomology H'(Gal(K/Q), A(K)), where A(K) denotes the group of
K-automorphisms of X (see [W], p.136).

Our result of classifying them is given as follows:

Theorem 1.2. Let A be the cohomology algebra of an elliptic space with x. = 0. If
dim H*(X; Q) < 8, then A is isomorphic to one of the following:

dim | isomorphic classes of graded algebras

1 1Q

2 | {Qlx]/(2), x| =20 | n € N}

3 | {Ql]/(x°), |x| =2n|n € N}

4 | {Qlx]/(x*), |x[ =2n|n € N},
{Q[x1,x2]/ (x3 + ax3, x1x2), |x1] = |x2| =2n|a € Q*/Q*%,n € N},
{Q[xl,xz]/(xl,xz) lx1] = 2n, |xp| = 2m | (n,m) € N?,n # m}

5 [ {Qx]/(x°), x| =2n|n € N},
{Q[x1, %2/ (x122, 27 +23), [x1| = 4n, |x2| = 61 | n € N}

6 | {Qlx]/(x°), x| =20 | n € N},
{Q[x1, x2]/ (x% + ax3,sx3 + tx3xy), |x1]| = |x2| = 21| (a,[s,t]) € T,n € N},
{QLxs, 1)/ (23,23), 1| = 20, [xa] = 2m | (n,m) € N, £ m},
{Q[x1, x2]/ (x1x2, x5 + ax}), |x1] = 2n, |x2| = 4n | n € N,a € Q*/Q*?}

7 1 {Qx]/(x), x| =2n|n € N},
{Q[x1, 2]/ (x5 + xz,xlxz) |x1| = 4n, |x3| = 6n | n € N},
{Q[x1, x2]/ (x12%2, 37 +x3), |x1] = 4n, |x2| = 101 | n € N},
{Q[x1, %2/ (x120, X7 +3), [x1| = 61, |x2| = 8n | n € N}
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The set T in the table is defined as follows. Let
P Q) =QxQ—{(0,00}/ ~,

where (t1,51) ~ (f2,52) if and only if there is an element r € Q* such that rt; =
to and rs; = s5. Set M; = Q* x P1(Q) and M = Q*? x P1(Q). We define an
equivalence relation ~ on M;\M; as follows: (aq,[s1,t1]) ~ (ap,[s2, t2]) if and
only if the following (1) and (2) are satisfied:

1. a1 -ay € Q*Z; ( then the quadratic extensions Q(+/a7) and Q(,/a3) coincide,
which we denote by K.)

ta —say/m2 t1 + 510/ € K3
fr +soy/02  t — S14/q ’

where Ky consists of elements of IK whose norms are 1.

Let My = {(r%,[s,t]) € M, | t +sr # 0}, and on M, we define an equivalence
relation ~ as follows:

f2 =Stz BiH81M _ 53

tr +sorp t1 — s '

(11, [s1,11]) ~ (13, [s2, ta]) <=

We set }
T=(M\Mz)/ ~UMy/ ~.

Then an element (x, [s,t]) € T corresponds to the isomorphism classes of the
algebras

Q[x1, x2]/ (¥ — ax3, sx3 + tx3xy)

of regular type. (See the last paragraph of Section 5 for details.)
We denote by B and C the family given in the second line of dim 4 and 6
respectively:

B = {Q[xl,xz]/(x% —|—ax%,x1x2), |x1| = |x2| =2n|a € Q*/Q**,n e N},

C= {Q[xl,xz]/(x% +ax%,sx:15-|— tx%xz), |x1| = |x2| =21 (a,[s,t]) € T,n € N}.

All the elements of the family in B (resp. C) are isomorphic as Q-algebra
after tensoring Q over Q. However they give us a family of infinitely many non
isomorphic Q-algebras in dimensions 4 and 6 even when ignoring the gradings.

The spaces representing the algebras in the table above can be constructed as
follows:

(1) The space X such that H*(X; Q) = Q[x]/(x¥); Let ¢ : K(Q, |x|) — K(Q, k|x])
be a map representing the element

€ Qlx] = H*(K(Q |x]); Q).

Then X is given as the homotopy fibre of ¢.
(2) The space X such that H*(X; Q) = Ql[x1, x2]/(f1, f2), where (f1, f2) is the
ideal generated by elements f; € Q[x1,xp]; Let ¢; : K(Q,|x1]) x K(Q, |x2]) —
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K(Q,|fi]) be a map representing the element f; € Q[x1,x2] = H*(K(Q, |x1]) x
K(Q, |x2]);Q) fori = 1,2 and let F be the homotopy fibre of ¢;. Then X is given
as the homotopy fibre of the composite map

g20i: F = K(Q, |x1]) x K(Q, [x2]) = K(Q,|f2]),

where i is the inclusion of the fibre.
Our method to classify the algebras is based on the dimension formula (2.2)
forn = 2:

dimg Q[x1, X2}/ (f1, f2) = | f1l - [f2|/|x1] - |x2]

due to Koszul, where |x;| and |f;| denote the degree of x; and f; respectively.

The present work is the revised version of [MS]. However there are no alter-
ations in the results but some minor modifications in the expressions. During
these past years, following our method in [MS], Kono-Tamamura obtain in [KT1]
and [KT2] similar results in dimensions 10, 11, 13; their arguments are entirely
the same as ours given in [MS].

The paper is organized as follows. In Section 2 we consider the case of dimen-
sions 1,2, 3; in Section 3 the case of dimension 4; in Section 4 the case of dimension
5; in Section 5 the case of dimension 6; in Section 6 the case of dimension 7.

Acknowledgement: We thank T.Yamaguchi for calling our attention to [Hi]
and also N. Iwase, H. Komatu, T. Maeda and T. Tasaka for useful conversations
while preparing the manuscript.

2 The case of dimensions 1,2, 3

Let {f1, -+, fu} be a regular sequence of graded elements in a polynomial ring
Q[x1,- -+, xn]. We can assume thateach f; (i = 1, - - - ,n) has no constant or linear
terms and that

(2.1) x| < x|l S0 S ful

Put A = Q[xy, -+ ,x4]/(f1,- -, fu). Then by the dimension formula (see [FHT;
(32.14), p.446]), we have

(2.2) dimg A = [f1] -~ [ ful /[x1] - - [xn]-
Lemma 2.1. 2|x;| < |f;| for i=1,--- ,n.

Proof. We prove by induction on i. Since f; has no linear terms, we have |f1| >
2|x1]. As inductive hypothesis we assume that 2|x;| < |fj| fori = 1,--- k. If
k| = |xes1l, then |feia| > |fel = 2fxi] = 2|xp4a]- Let |xeiq] > [xi] and sup-
pose |fir1| < 2|xgy1|- Then fiyq is contained in the ideal (xjqx; for i < k, x;x;
for i,j < k), and hence we see that fi 1 € (x1,---,x¢), the ideal generated by
{x1,-+-,x¢}. Thus f1,- -, fre1 are all contained in the ideal (x1,- - -, x¢), that is,
(fi,--+, fre1) C (x1,- -+, xx). Then, for (any irreducible component of) varieties
of Q-points, we have

V(fi, frixr) D VI(x1, -, xx),



On the classification of rational homotopy types of elliptic spaces 929

where

V(fi o firn) = (x€Qfi) =0, 1<i<k+1},
Vixy, - ,x) ={xeQ'|x;=0, 1<i<k}.

Hence we have
dimV(fy, -+, fyr1) > dimV(xq, - -, x¢) = n—k,
which contradicts the fact that {f1, - - -, fx11} is a regular sequence. n
Combining (2) and Lemma 2.1, we have
(2.3) dimg A > 2".

If dimgA = 1,thenn = 0and A = Q. If dimg A = 2, thenn = 1 and
A= Q[x]/(x?). If dimg A = 3, thenn = 1and A = Q[x]/(x®).

3 The case of dimension 4

Let A be the cohomology algebra of an elliptic space with x; = 0 such that
dimg A =4. Thenn = 1or 2in (2). If n = 1, then A = Q[x]/(x%). If n = 2, then
it follows from Lemma 2.1 and (2.2) that

il =2/l [fa] = 2[xal.
If |x1] < |x2], then (f1) = (x?), and f; is of the following form:
fo = ax3 + bxll<1 X2 + cxll‘2
with a # 0, where k; > ki > 2. Hence we obtain that
(fi, f2) = (21, 23).
If |x1| = |x2|, then we may set

fi = ax? +bxyxp 4+ cx3,  fr =dxd +exyxy+ fx3 (a,b,c,d,e, f € Q).

Ifa =c=0,then (f1, f2) = (xlxp_,x% + ax3), where & = ]Ec € Q*. Ifa # 0, by

b
setting a <x1 + sz) = uy, we have

4ac — b?
4a

flzu%—l—txx%, N =

By using f1, we obtain the form (f1, f2) = (u? + ax3,guixs +hx3). If ¢ = 0,
then we have (f, f2) = (ul,xz) If ¢ # 0, we setv; = guj + hxy. Then f, = vyx;
using f» we have (f1, f2) = (v + Bx3,v1x2) for some B € Q. The case ¢ # 0 is
similar. Thus we have shown the following
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Lemma 3.1. Let f; and f, be homogeneous polynomials of degree 2.  Then
Q[x1, x2]/ (f1, f2) is isomorphic to Q[x1, 2]/ (x% + ax3, x1x7) for some & € Q*.

Remark. Q[xl,xz]/(x%,x%) is isomorphic to Q[xl,xz]/(x% + x3,x1%2) as Q- alge-
bras.

Notation. A, = Q[x1, x2]/(x} + x4, x1x2) for v € Q*.

Proposition 3.2. The algebras Ay and Ag (a, € Q) are isomorphic if and only if
a- Bl e Qx2

Proof. Suppose that there is an isomorphism ¢ : Ay — Ag. Then we can set
p(x1) = prx1 +q1x2,  @(x2) = pax1 + G2x2 (pi.qi € Q).
Then we have

@(x2 4+ ax3) = (p3 + ap3)x? + 2(p1q1 + apag2)x122 + (3 + aq3)x3,
@(x1x2) = p1p2x3 + (p1g2 + pagn) ¥1%2 + G192%3.

Since these elements are zero in Ap, we have (p% + ocp%) B = q% + txq% and
p1p2B = q192. Thus we have

ap™ = (p1/42)" € Q%
Conversely, if 1! € Q*2, the map ¢ : Ay — Ag defined by
p(x1) =x1,  @(x2) = ey

gives an isomorphism ¢, where r is an element of Q* such that 2 =a"! B. [ ]

4 The case of dimension 5

Let A be the cohomology algebra of an elliptic space with x; = 0 such that
dimg A = 5. Thenn = 1 or 2in (22). If n = 1, then A = Q[x]/(x°). If n = 2,
then we have |f1| - |f2| = 5|x1] - [x2] in (2.2).

(a) Assume that |f1| is an integer multiple of |x1|, thatis, |f1| = k|x1| for some
integer k > 2. By Lemma 2.1 we have

5
2[x| < |fo| = E|x2|'

Hence we have k = 2. Then f; is contained in the ideal generated by x;. By
regularity fi is not contained in the ideal (x1). Then |f1]| = ¢|x;| for some integer
¢ > 2. Then we have

20| < |fi] = 2|xa.

5
Hence we have |x1| = |x;|. But this contradicts that |f,| = §|x2|.
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(b) Assume that | f1] is an integer multiple of | x|, thatis, |f1| = k|x2| for some
integer k > 1. Then by Lemma 2.1 we have

5 5
20| < |f2| = E'xl, < %|x2!-

Thus we havek = 1 or 2.

If k = 1, then f; is a polynomial of x; since f; has no linear terms. But then
| f1] is an integer multiple of | x|, which is impossible by (a).

5
If k = 2, then f, is contained in the ideal (x;), since |f2| = 5 |x1]. By regularity

f1 is not contained in the ideal (xp). This implies that |f1| is an integer multiple
of |x1|, which is impossible by (a).

(c) Thus | f1] is neither integer multiple of |x1| nor of |x;|, thatis, f; is contained
in both (x1) and (x2). Hence f; is an integer multiple of both |x1| and |x,|, that s,
|f2| = ki|x1| = ka|x2]| for some integers ki, k, > 2. Then from the inequality

5 5
2[xq| < |f1| = k_2|x1| < E|x2|'

we deduce ky = 2. If k; = 2, then |x1| = |x2], and so | f1] is an integer multiple of
|x1]. This contradicts the assumptions. Thus k; > 3. Then we have

Sl = A 2 |l + ] = o]+ Sl
which implies that k; = 3. Then we have
fil = [al+x2l, fol =2[x2],  3[xa1] = 2|xa.
Thus the only possibility is that
(f1, f2) = (xlxz,x:f + zxx%), x € Q”.
Proposition 4.1. For any a, B € Q*, there is a graded algebra isomorphism

Q[x]./ x2] N Q[X1,X2]

" (x1x2, x% + ax?) ’ (x1x2, x% + Bx3)

Proof. Since |x1| < |x2]|, the graded map is of the following form:

@(x1) = p1x1,  @(x2) = q2x2

for some p1,q2 € Q*. This correspondence ¢ defines an isomorphism if and only
if p3B = ag3. Hence by setting p1 = g2 = af~1 € Q*, we obtain the desired
isomorphism. n



932 M. Mimura - H. Shiga

5 The case of dimension 6

Let A be the cohomology algebra of an elliptic space with x; = 0 such that
dimgA = 6. Thenn = 1 or 2in (2). If n = 1, then A = QIx]/(x%). So we
let n = 2 for rest of the section.

First we consider the case |x1| < |x3].

(a) Assume that |f;| is an integer multiple of | x|, thatis, |f1| = k|x2| for some
integer k > 1. Then we have

6 6
2l < |f2| = E|x1| < E|x2”

which implies that k = 1 or 2.
If k =1, then fi = x{" and |x2| = m|xq| with m > 2. By the dimension formula
(2.2) for n = 2 we have

6
f2| = E|x2|'

As f, is not contained in the ideal (x;), we deduce that |f,| is an integer mul-
tiple of |xz|. Hence m = 2 or 3. If m = 2, then (f1, f2) = (x3,x3) with |xz| = 2|x1].
If m = 3, then (f1, f2) = (x5, x3).

3
If k = 2, then |f1| = 2|xp| and | f2| = 3|x1|. Hence we have |x1| < |x2] < E]x1|.

3
Suppose |x1| < x| < §|x1|. Then, since we have |x1| + |x2] < 2|x| = |fA1] <
3|x1| = |f2] < 2|x1| + |x2], we can deduce

(f1.f2) = (3, 7).

3
Suppose |x;| = 5 |x1|. Then we have

f1= ax:f + bx%, fo = cxi’ + dx%_

for some a,b, ¢, d € Q satisfying ad — be # 0. Hence (f1, f2) = (x5, x3).
(b) Assume that | f1| is an integer multiple of |x;| and not of |x;|, thatis, |f1]| =
k|x1| for some integer k > 2. If k > 4, then |f| < §|x2] and |f1] is an integer

multiple of |x;|, which is not allowed. Hence k = 2 or 3.
If k =2, then | f1| = 2|x1| and |f2]| = 3|x2|. Thus we have

(f1.f2) = (1, x3).
If k = 3, then |f1| = 3|x1| and |f2| = 2|xp|. If |x2] # 2|x1], we see (f1, f2) =

(7, %3).
If |x2| = 2|x1]|, then we have

(f1, f2) = (ax3 + bx1xo, cx3 + dx})

for some a,b,c,d € Q such that a>c + b>d # 0 and ¢ # 0.
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Proposition 5.1. The graded algebras Q|x1,x2]/(ax3 + bxixp, cx3 + dxi), where
a,b,c,d € Q, such that a?c + b*d # 0 and that ¢ # 0 are isomorphic to one of the
following

Q[x1, x2]/ (x12x2, x5 + ax]) with o € Q%,  Q[x1, x2]/ (x5, 3).
Moreover Q[x1, x2]/ (x1x2, X3 4 ax) and Q[x1, x2]/ (x1x2, X3 + Bx}) are isomorphic if
and only if =1 - B € Q*2.
Proof. 1f b # 0, we set ax? + bx, = Xp. Then

c a?c
(fi, f2) = (x1Xp, ﬁXg + (ﬁ +d)x})

2c+ b2d
= (x1Xp, X3 + ax}), where a = actod c

Q*.

The second part of the proposition follows from an easy calculation.

If b = 0, then they are isomorphic to Q[x1, x2]/ (x3, x3).

(c) If | f1] is not an integer multiple of |x1| and not of | x|, then by the regularity
| 2] is an integer multiple of |xz|. Let |f2| = k|xz| for some integer k > 2. Then

6
f1] = E|x1| and k < 3. Hence k = 2 or 3, and so we have |f1| = 2|x1| or 3|x1],

which is not allowed. n
The case n = 2 and |x1| < |x2| can be summarized as follows.

Proposition 5.2. The set of isomorphism classes of graded algebras of dimension 6 with
n = 2 satisfying the condition |x1| # |x3| are

{Q[xl,xz]/(x%, x%), |x1| = 2n, |xp| =2m | (n,m) € N2, n # m},

{Q[xl,xz]/(xlxz,xg —i—ocx‘l"), |x1| =2n,|x2] =4n|n € N,a € QX/sz}.

We consider the case |x1| = |x2|. Then f; and f, are homogeneous polynomi-
als of degree 2 and 3 respectively. As in Lemma 3.1, we may set

fi = x% —ax3, a € Q.

By the same way as in Proposition 3.2, we have the following: If there is an iso-
morphism

Q[x1, x2]/ (x2 — a1%3, f2) — Q[x1, x2]/ (¥ — w23, f3),

then we have
(Dag=ar=0o0r (2 ag-ap € QX2.
For the case (1), we have isomorphisms

Q[x1, x2] (%%, f2) = Q[xy, x2] (33, x5 + ax1x3) = Q[xy, x2]/ (x3, x3).

Next we consider the case (2). Assume that #; € Q* and a; ¢ Q*? and that
there is an isomorphism

@ : Qxy, x2]/ (xF — w123, f1) — Qlxy, x2]/ (x5 — axx3, f2)
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defined by
p(x1) = px1+qx2, @(x2) = rxy +sxp
with p,q,7,5s € Q*. Then pg = «yrs and

2

2 2

s u s

—ny = 7072 5 1__P , SO K] -y = (ﬂ) e Q>
p* —rémq rp r

The case that one of p, g, 7, s is zero is similar.
So we set ay = r?ay for some r € Q. The polynomials f,, f; can be chosen as

fo =510 +HX3x0, fh = Sox3 + bhxdxy
with some s;, t; € Q (i = 1,2). Set
(5.3) X1 =x1+ Varxp, Xo = x1 —/a1xp.
Let K = Q(,/a7) be the quadratic field. Then we have an isomorphism

Q[x1, x2]/ (¥ — w123, f1) %IK ~ K[Xy, Xo]/(X1Xa, f1),

where fi = (t; + slw/ocl)Xi5 + (—t1 +s1/a1)X5. Hence ¢ induces an isomor-
phism

9 : K[Xq, X2/ (X1 X2, X3 +a1X5) — K[X1, Xa]/ (X1 X2, X5 + 22X3),

—t —t \/
where a1 = M and a, = M. Remark here that a1a; # 0 by

t1 +s14/a1 tr +sory/aq
the regularity of the ideals appearing in the above.

Let
9(Xi) = piXa1 +4iXa, pi,gqi € K
for i = 1,2. We have p1pp = 0 and 192 = 0, since ¢(X1X2) € (X1X3). Thus

p2=qg1=0o0rp; =q2=0.
First, we consider the case py = g1 = 0. Then we have p14; # 0 and that

(54) aar ' = (q2p; )%
It follows from (3) that
_ 1
9(x1) = S{(p1 + )21 + Vaa(pr — 42)x2},

(5.5) B 1
P(x2) = 2\/“—1{(;?1 —q2)x2 + /ar(p1 + q2) %2}

Since ¢ is defined over Q, we have

p1+q€Q and (p1—q2)Va1 €Q,

which implies that p; and g, are conjugate elements over Q by the equalities
(5.5). Then gap; ' are of the form uu~1, where u’ is the conjugate of u € K*



On the classification of rational homotopy types of elliptic spaces 935

if we take u = p1 and g, = u“. By Hilbert’s Theorem 90 (see [M; p.93]), the set
{uu='u € K*} coincides with the set K; = {y € K*|Nk(y) = 1}, where
Nk (7) is the norm ¢ — ayd? for the element vy = ¢ + d,/a7. It follows from the
condition aya; 1 e 1K1X3 that

tr — Sory/’q f1—51«/ ><3
(5.6) ]K
ty + sory /0y h+ S1v/ X1

For the case p; = g2 = 0, quite similarly to the above we have p>g4; # 0 and that

mat = (mpy 1)

For the same reasons as the above, p; and ¢q; are conjugate over Q. Hence we
also have azal_1 € ]K1X3.
Conversely, we have

Proposition 5.3. Let (a;, [s;, t;]) be elements of My \My (i = 1,2). If (aq, [s1, 11]) and
(ap, [$, t2]) are equivalent, then there is a graded algebra isomorphism
9 : Q[x1, x2)/ (27 — a1x3,51%5 + Hadxp) — Qlxy, x2]/ (3 — apx3, 5245 + tx3x3).

(See the statement below Theorem 1.2 in Section 1 for the definitions of M,
M, and the equivalence relation.)

Proof. Since (a1, [s1,t1]) and (ay, [s2, t2]) are equivalent, there is r € Q* so that
ny = r?aq, and we may set

t +51\/_1 th — sory/0q 3 x
=t’, te K
b —s1/& b+ sory /A
Then t € K;. Again by Hilbert’s Theorem 90, we may write
b/
t = u, alb € Q
a—by/uq

Let X; and X, be as in (5.3). We can define a IK-graded algebra map

P KXy, Xa]/ (X1 X0, X} — t1+:\/\ﬁ_ S,

ta — sary/aa X3
K[X1, Xa]/ (X1 X2, X5 —
(X1, X5]/ (X1 X5 t2+szr\/7 X5)

by
P(X1) = (a+by/u1)X1, P(Xz) = (a — by/a7) X,

for some a,b € Q. Then we have

pin) = (252) = Ha+by/aX + (e — by X}
= 3{(a+bya1)(x1+ a1x2))
+(a — by (1 — V/E0)}

= axq + baqxy,



936 M. Mimura - H. Shiga

) =9 (B322) = sd{la+bym)(x + vaix)
—(a — by/ar)(x1 — /w1x2) }

= bxy+axsp.
Hence v is defined over Q. Thus we have a graded Q-algebra isomorphism

¥ Qlxy, xz]/(x% — lex%,slx:f + tlx%xz) — Q[xl,xz]/(x% — oczx%, szx:f + tzx%xz).

Next we consider the case that («;, [s;, ;]) € M (i = 1,2). (For the definition
of M see Section 1.)

Proposition 5.4. The two graded algebras
Q[x1, x2]/ (x2 — ¥3x3, 5105 + t1x37x0) and Q[xq, x2] / (33 — ¥5x3, 5045 + trx3xz),
where (72, [si,ti]) € My (i = 1,2), are isomorphic if and only if (a1, [s1,t1]) and
(a2, [s2, t2]) are equivalent, that is,
2 =Sfa Bt sin _ gx3
tr +s2r2 t — 811 '

Proof. By setting
Y1 =Xx1+t7r1X2, Y2 = X1 — 11X,
the graded algebra over Q
Qlx1, %)/ (x] — 1ix3, 5137 + ix7x2)

is isomorphic to

Qly1, 2]/ (y1ya, (b1 +s111)y3 + (—t1 +s171)y3).

Observe that there is an isomorphism

¢ : Qly1,y2)/ 1y, (i +s1r)yi + (—h +s111)y3) =
Qly1, vl / (y1y2, (2 + s2r2)y3 + (—t2 + 52r2)173)

if and only if

f2 =Sofa Bt s _ gx3

tr +sor2 t1 — 8111 '
In fact, if we set ¢(y;) = piy1 + qiy2 for p;,q; € Q (i = 1,2), then p1p2 = 0 and
g192 = 0. The condition f £ sr # 0in M, is equivalent to the one that the sequence
{x2 — r2x3, sx3 + tx2x,} is regular. m

By Propositions 5.3 and 5.4 we have
Proposition 5.5. The set of isomorphism classes of graded algebras over Q
Q[x1, x2]/ (%3 4 ax3, sx3 + txdxy)
corresponds bijectively to the set
T=(M\M)/ ~UMy/ ~
In the case {0} x P!(Q) it corresponds to the algebra

Q[x1, x2]/ (x3,5%5 + tx3x1) = Q[xy, 2]/ (x3, %3). ]
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6 The case of dimension 7

Let A be the cohomology algebra of an elliptic space with x; = 0 such that
dimg A =7. Thenn = 1or 2in (2). If n = 1, then A = Q[x]/(x7). If n = 2, then

ful - | fal = 7[xa] - [l
(a) Assume that | f1| is an integer multiple of |x1|, thatis, |f1| = k|x1| for some
integer k > 2. Then k = 2 or 3.

If k =2, then |f,| = ;|x2|, which implies f, € (x1). By regularity f; contains

the term cx3, and hence |x1| = |x2|. This implies that | f>| is an integer multiple of
|x2|. This is a contradiction.

If k = 3, then |f>| = §|x2] and f, € (x1). Thus we have that |f;| = 2|x| and

7
2] = E]x1|, which implies that (f1, f2) = (x§ 4 ax3, x2x;), where a € Q*.

(b) Assume that | f1] is an integer multiple of | x|, thatis, |f1| = k|x2| for some
integer k > 1. Then |f,| = 7|x1| and so f» € (xp). This implies that |f1| is an
integer multiple of |x1|, and so we are reduced to the case (a).

(c) Assume that |fi| is neither an integer multiple of |x;| nor of |x;|. Then

f1 € (x1) N (x2), and hence f, contains a non zero multiple of xll<1 and xlzc2 for
some integers ki, ko. Then

|2l = k1]x1| = ko|x2]

and k1 > ky > 2.
If kp > 4, then |f1] < Z|x1 |, which is impossible by Lemma 2.1.

Thus we can deduce that ko, = 2 or 3.
(1) Letk, = 2. If ky > 6, then

k
Al ol el > (145 ) ] 2 4l
and hence we have by (2.2) for n = 2 that

7
<L
f2] < Zlx2l,
which contradicts Lemma 2.1. Thus ky = 3 or 4 or 5.
If k; = 3, then
Al = 2wl = 2Jxa] > 3l = |f
1= 3z*l=5n 1l = (/2]

This contradicts the assumption.
If k1 = 4, then |x| = 2|x1| and |f1] is an integer multiple of |x;|. This contra-
dicts the assumption.

7 7
If k =5, then |f1]| = §|x2| = §|x1| = |x1| + |x2|. Then we have

(fi, f2) = (x122, X7 + ax3), aeQ”.
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(2) Let k; = 3. Then we have that

7 k
Sl =141 = ]+ el = (145 ) o

Since k1 > kp, we see that ky = 4 and |f1| = |x1| + |x2|, which implies that

(fi, f2) = (x1x2,x1 +ax3),  a€QX,
where 4|x1| = 3|x3].
Proposition 6.1. The isomorphism classes of the algebras

Q[x1, x2]/ (x] + ax3, x7x2), Qlx1,x2]/ (x1x2, %] + ax3), Q[x1,x2]/ (x1%x2, X] + ax3)

do not depend on the choice of a € Q*.
Proof. The correspondence
plx1) =pxi, ¢x2)=qw  (pgeQ")
defines an isomorphism
Q[x1, x2) /(x5 + ax3, x3x3) — Q[x1, x2] (x5 + ba3, x3x2)

if and only if p°b = g2%a. Hence, if we take p = g = ab~!, we obtain the desired
isomorphism. The cases of the other algebras can be similarly proved. m
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