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Abstract

A subspace arrangement A in Cm is a finite set {x0, . . . , xn} of vector sub-
spaces. The complement space M(A) is Cm \

⋃
x∈A x. When each subspace

is an hyperplane, it is also known as an arrangement of hyperplanes. In
that case, it is known that the Poincaré polynomials of M(A) is connected
to the Poincaré polynomials of the complements of the deleted arrangement
A′ = A \ {x0} and of the restricted arrangement A′′ = {x0 ∩ y |y ∈ A′} by
the nice formula

Poin(M(A), t) = Poin(M(A′), t) + t Poin(M(A′′), t).

In this paper, we prove that for a subspace arrangement, there is a long exact
sequence in cohomology which connects M(A) to M(A′) and M(A′′). Using
it, we can extend the above formula to arrangements with a geometric lattice,
and to some other specific arrangements.

1 Introduction

A subspace arrangement A in Cm is a finite set {x0, . . . , xn} of vector subspaces.
The complement space M(A) is Cm \

⋃
x∈A x. In general, this is a complicated

space. An interesting way to understand this space is to consider the deleted
arrangement A′ = A \ {x0} and the restricted arrangement A′′ = {x0 ∩ y |y ∈
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A′}. Sometimes, the topology of the space M(A) can be linked to the topology of
M(A′) and M(A′).

For example, when A is an arrangement of hyperplanes, we have the formula
(see [3])

Poin(M(A), t) = Poin(M(A′), t) + t Poin(M(A′′), t).

This formula inductively turns the computation of the Betti numbers of M(A)
into a simple exercise. In this paper, we shall generalize this formula to some
larger classes of arrangements. For those arrangements (which includes the ar-
rangements of hyperplanes), we have :

Poin(M(A), t) = Poin(M(A′), t) + t2 codim x0−1 Poin(M(A′′), t).

To obtain this relation, an important step is to prove that there always exists a
long exact sequence

· · · → Hq(M(A′), Q) → Hq(M(A), Q) → Hq−deg(x0)(M(A′′), Q)

→ Hq+1(M(A′), Q) → Hq+1(M(A), Q) → · · ·

where deg(x0) = 2 codim x0 − 1.
Our computations are based on a rational model D(A) for the complement

space. We describe it in section 2.
The third section is the most technical. Its aim is to prove the existence of

the long exact sequence mentioned above. The idea is to consider the injection

j : D(A′) → D(A), and to prove that the quotient D(A)
D(A′)

is quasi-isomorphic to

D(A′′) up to a shift of degree. The long exact sequence follows directly. It also
follows that the Euler characteristic of M(A) is always zero (assuming that A is
not empty).

Finally, the last section is about Poincaré polynomials. The two main results,
theorems 4.3 and 4.9, state that if A has a geometric lattice, or if x0 is a separator
(see section 4 for a definition), then

Poin(M(A), t) = Poin(M(A′), t) + tdeg x0 Poin(M(A′′), t).

Note that this is not true in general. A counterexample is given in section 4.

2 Rational model

To each subspace arrangement A = {x1, . . . , xn} in Cm, we associate a rational
model D(A) that is a commutative differential graded algebra. This model has
been described by Feichtner and Yuzvinsky in [4].

First, let us establish an useful notation : the notation {xi1 , . . . , xir}< simply
means that i1 < · · · < ir.

Now, let us define the model D(A). As a vector space, D(A) = ⊕σ⊆AQ[σ]
is the 2n-dimensional rational vector space generated by the subsets of A. A
grading is given by

deg(σ) = 2 codimC ∩σ − |σ|,
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where ∩σ is the intersection of each subspace of σ and |σ| is the number of ele-
ments of σ. The multiplication is simply defined by

σ · τ =

{
(−1)sgn ǫ(σ,τ)σ ∪ τ if deg σ + deg τ = deg(σ ∪ τ),

0 otherwise,

where σ, τ ⊆ A and ǫ(σ, τ) is the permutation that, applied to σ ∪ τ (with the
obvious linear order x1 < · · · < xn), places elements of τ after elements of σ.

Finally, let us define a differential d : D(A)⋆ → D(A)⋆+1. For σ = {xi1 , . . . ,
xir}<, let Jσ = {j ∈ [r] |xij

∈ σ and ∩ (σ \ {xij
}) = ∩σ}. Then the differential is

defined by the formula

dσ = ∑
j∈Jσ

(−1)j(σ \ {xij
}).

3 Deleted and restricted arrangements

3.1 Technical lemmas

Let A = {x0, x1, . . . , xn} be a subspace arrangement in Cm. Consider the deleted
arrangement A′ = A \ {x0} and the restricted arrangement A′′ = {x0 ∩ y |
y ∈ A′}, viewed as an arrangement in x0

∼= C2 dim x0 .
In this subsection, we prove that there exists a quasi-isomorphism of degree

1 − 2 codim x0

ϕ :
D(A)

D(A′)
≃
→ D(A′′).

Let us define an equivalence relation in A′ : xi ∼ xj if and only if x0 ∩ xi =
x0 ∩ xj.

Before constructing a map D(A)/D(A′) → D(A′′), we construct a map
ϕ : D(A) → D(A′′). For σ ⊆ A, we let

ϕ(σ) =






0 if x0 6∈ σ

0 if x0 ∈ σ and ∃y 6= z ∈ σ such that y ∼ z
⋃

y∈σ\{x0}{x0 ∩ y} otherwise

This map is not multiplicative but it commutes with the differential, as shown
by the following lemma.

Lemma 3.1. The map ϕ : D(A) → D(A′′) defined above commutes with the differen-
tial.

Proof. Since ϕ has odd degree, we must have ϕd = −dϕ. Let σ ⊆ A. If x0 6∈ σ,
then we have dϕ(σ) = 0 = ϕ(dσ). If x0 ∈ σ and there exists y 6= z ∈ σ with y ∼ z,
then dϕ(σ) = 0 and

dσ = d{x0, y, z, xi1 , . . . , xir} = α (σ \ {x0}) + {x0, z, xi1 , . . . , xir}

− {x0, y, xi1 , . . . , xir}+∑
j

αj

(
σ \ {xij

}
)

,
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where α and the αj can be 0 or ±1. So, by definition of ϕ, we have : ϕ(dσ) = 0.
Finally, we consider the case where x0 ∈ σ and there is no y 6= z ∈ σ such

that y ∼ z. In that case, let σ = {x0, xi1 , . . . , xir} and denote by J the set J =
{j | ∨ (σ \ {xij

}) = ∨σ}. We have

ϕ(dσ) = ϕ

(
α (σ \ {x0}) + ∑

j∈J

(−1)j+1σ \ {xij
}

)

= ∑
j∈J

(−1)j+1{x0 ∩ xi1 , . . . , x0 ∩ xir} \ {x0 ∩ xij
},

dϕ(σ) = d{x0 ∩ xi1 , . . . , x0 ∩ xir}

= ∑
j∈J

(−1)j{x0 ∩ xi1 , . . . , x0 ∩ xir} \ {x0 ∩ xij
}.

So, the map ϕ commutes with the differential d.

The map ϕ is clearly surjective and satisfies ϕj = 0, where j is the injection
D(A′) →֒ D(A). So ϕ induces a surjective morphism of complexes

ϕ :
D(A)

D(A′)
→ D(A′′).

We will show that this map induces an isomorphism in cohomology. For that, we
introduce the set :

E = {(y, z) ∈ A′ ×A′ |y ∼ z and y 6= z}.

If the set E is empty, then ϕ is injective and is an isomorphism. Otherwise,
for every (u, v) ∈ E, let Iu,v be the vector subspace of D(A)/D(A′) generated by
the elements {x0, u, yj1 , . . . , yjr}−{x0, v, yj1, . . . , yjr} and {x0, u, v, yj1 , . . . , yjr} with
yi ∈ A \ {x0, u, v}. Let V = ∑(u,v)∈E Iu,v.

The technical part of this section is contained in the following three lemmas.

Lemma 3.2. In D(A)/D(A′), we have V = ker ϕ.

Lemma 3.3. For every (u, v) ∈ E, d(Iu,v) ⊆ Iu,v, so Iu,v is a subcomplex of
D(A)/D(A′). Also, the complex Iu,v is acyclic.

Lemma 3.4. The vector space V is acyclic.

Lemma 3.4 does not trivially follow from lemma 3.3. There is no reason for a
cocycle α to decompose as a sum of cocycles αu,v ∈ Iu,v. The problem comes from
the fact that Iu,v ∩ Iv,w needs not be empty.

These three lemmas give us the following proposition.
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Proposition 3.5. The map ϕ : D(A)/D(A′) → D(A′′) is a quasi-isomorphism.

Proof. By lemma 3.2, we can factorize ϕ as shown in the following diagram.

D(A)
D(A′)

ϕ
//

p
��

D(A′′)

D(A)
D(A′)⊕V

ϕ̃

;;
v

v
v

v
v

v
v

v
v

v

where ϕ̃ is the quotient map. Since V = ker ϕ and ϕ is surjective, ϕ̃ is an isomor-
phism. By lemma 3.4, the map p is a quasi-isomorphism, which implies that ϕ is
a quasi-isomorphism as well.

Let us prove these lemmas.

Proof of lemma 3.2. It is clear that V ⊆ ker ϕ. Let u = ∑s∈I αsσs ∈ ker ϕ, with
αs 6= 0 for all s ∈ I and σs 6= σt if s 6= t. To prove that u ∈ V, we show that we can
substract elements of V from u until we obtain zero.

• If there exists a s ∈ I such that σs = {x0, u, v, yj1 , . . . , yjr} with x0 ∩ u = x0 ∩ v
and u 6= v, then αsσs ∈ V and we can substract it from u. Let us repeat this
operation until we obtain a sum ∑s∈I ′ αsσs without any such σs.

• Let t ∈ I ′. Then the element σt is necessarily of the form {x0, xi1 , . . . , xir}<
with x0 ∩ xij

6= x0 ∩ xik
for j 6= k. We have

0 = ϕ

(

∑
s∈I ′

αsσs

)
= αt{x0 ∩ xi1 , . . . , x0 ∩ xir}+ ∑

s∈I ′\{t}

αs ϕ(σs).

So, there exists s ∈ I ′ \ {t} such that ϕ(σs) = ϕ(σt). This is possible only
if σs = {x0, y1, . . . , yr} with x0 ∩ xij

= x0 ∩ yj. In that case, the difference

σs − σt can be rewritten as

r

∑
j=1

(
{x0, y1, . . . , yj−1, yj, xij+1

, . . . , xir} − {x0, y1, . . . , yj−1, xij
, xij+1

, . . . , xir}
)
,

which is clearly in V. We can substract αt(σt − σs) from the sum and we
obtain another sum ∑s∈I ′′ αsσs such that |I ′′| < |I ′|. This process can be
repeated until we obtain an empty sum.

Therefore, u ∈ V and V = ker ϕ.

Proof of lemma 3.3. Let us consider a cocycle

α = ∑
i

αi

(
{x0, u, yi1 , . . . , yir} − {x0, v, yi1 , . . . , yir}

)

+ ∑
j

β j{x0, u, v, zj1 , . . . , zjr−1
},
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with the yik
, zjk 6∈ {x0, u, v}. We want to show that α is a coboundary. Let

Ki =
{

k | ∩ {x0, u, yi1 , . . . , yir} = ∩({x0, u, yi1 , . . . , yir} \ {yik
})
}

,

Lj =
{

k | ∩ {x0, u, v, zj1 , . . . , zjr−1
} =

∩ ({x0, u, v, zj1 , . . . , zjr−1
} \ {zjk})

}
.

Since α is a cocycle, its differential is zero and we have

dα =∑
i

αi ∑
k∈Ki

(−1)k
(
{x0, u, yi1 , . . . , yir} \ {yik

}

− {x0, v, yi1 , . . . , yir} \ {yik
}
)

+ ∑
j

β j

(
{x0, u, zj1 , . . . , zjr−1

} − {x0, v, zj1 , . . . , zjr−1
}
)

+ ∑
j

β j ∑
k∈Lj

(−1)k+1{x0, u, v, zj1 , . . . , zjr−1
} \ {zjk} = 0.

Looking at the terms without v and using the relation dα = 0, we have

∑
i

αi ∑
k∈Ki

(−1)k{x0, u, yi1 , . . . , yir} \ {yik
}+∑

j

β j{x0, u, zj1 , . . . , zjr−1
} = 0.

But we can add a v into each terms of the previous relation. This gives

−∑
i

αi ∑
k∈Ki

(−1)k{x0, u, v, yi1 , . . . , yir} \ {yik
} = ∑

j

β j{x0, u, v, zj1 , . . . , zjr−1
}.

Finally, let ω = − ∑i αi{x0, u, v, yi1 , . . . , yir}. Its differential is

dω = ∑
i

αi

(
{x0, u, yi1 , . . . , yir} − {x0, v, yi1 , . . . , yir}

)

− ∑
i

αi ∑
k∈Ki

(−1)k{x0, u, v, yi1 , . . . , yir} \ {yik
} = α.

Hence, α is a coboundary and Iu,v is acyclic.

Proof of lemma 3.4. Clearly, d(V) ⊆ V. Showing that V is acyclic is technical. We’ll
do it in three steps. First, we choose a finite number of couple (ui, vi) ∈ E that
have some nice properties. Then, using these elements, we construct a sequence
of vector subspaces I0 ⊆ I1 ⊆ · · · ⊆ Ir = V. Finally, we prove by induction that
all these subspaces are acyclic.

Without loss of generality, we can assume that x1, . . . , xn are numbered in such
a way that equivalent spaces (for ∼) are consecutive. Let A1, . . . ,Aq be the equiv-
alence classes on A′ :

A1 = {xj1 , . . . , xj2−1}<,

A2 = {xj2 , . . . , xj3−1}<,

. . .

Aq = {xjq , . . . , xjq+1−1}<,
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where j1 = 1 and jq+1 − 1 = n. Let Ai be the first class with more than one ele-
ment and (u0, v0) = (xji , xji+1) ∈ E, (u1, v1) =
(u0, xji+2), . . . , (uℓ, vℓ) = (u0, xji+1−1). Let Ak be the next equivalence class with
more than 1 element and (uℓ+1, vℓ+1) = (xjk , xjk+1), (uℓ+2, vℓ+2) = (xjk , xjk+2), . . .
We can do this until we have a sequence (ui, vi)0≤i≤r ⊆ E with the following
properties : V = ∑

r
i=0 Iui,vi

and vℓ 6∈ {u0, v0, u1, v1, . . . , uℓ−1, vℓ−1}.

Let I0 = Iu0,v0 and Ij = ∑
j
i=0 Iui,vi

. We just defined an increasing sequence

Iu0,v0 = I0 ⊆ I1 ⊆ · · · ⊆ Ir = V.

Lemma 3.3 shows that I0 is acyclic. Suppose Iℓ−1 acyclic and let us show that
Iℓ = Iℓ−1 + Iuℓ,vℓ is acyclic as well.

Let us start by proving that every element of Iℓ can be written as a sum
α1 + α2 + dω where α1 ∈ Iℓ−1, α2 ∈ Iuℓ,vℓ , ω ∈ Iℓ−1 and there is no vℓ in any of the
terms of α1. It is sufficient to see that it is true for every element of a generating
sequence of Iℓ−1 :

• Let σ = {x0, ui, vi, . . .} ∈ Iℓ−1. If vℓ ∈ σ and uℓ ∈ σ, then σ = 0 + σ + d(0).
If vℓ ∈ σ and uℓ 6∈ σ, then d(σ ∪ {uℓ}) = ±σ ± (σ ∪ {uℓ}) \ {vℓ}+ S where
S is a sum with {uℓ, vℓ} in each term, which means that S is in Iuℓ,vℓ . It
shows that we have the required decomposition σ = ±(σ ∪ {uℓ}) \ {vℓ} ±
S ± d(σ ∪ {uℓ}), for an appropriate choice of signs.

• Let α = {x0, ui, yj1, . . . , yjs} − {x0, vi, yj1, . . . , yjs} ∈ Iℓ−1. If we have vℓ ∈
{yj1 , . . . , yjs} and uℓ 6∈ {yj1 , . . . , yjs}, then consider ω = {x0, ui, yj1, . . . , yjs}∪
{uℓ} − {x0, vi, yj1, . . . , yjs} ∪ {uℓ} ∈ Iℓ−1. As in the first case, we obtain a
proper decomposition from dω.

Now, we can show that every cocycle in Iℓ is a coboundary. Let α ∈ Iℓ such
that dα = 0. Since Iℓ = Iℓ−1 + Iuℓ,vℓ , we can write α = α1 + α2 + dω with α1 ∈
Iℓ−1, α2 ∈ Iuℓ,vℓ , ω ∈ Iℓ and no vℓ in any term of α1. The vector α2 is a sum

α2 = ∑
i

γi

(
{x0, uℓ, yi1 , . . . , yis

} − {x0, vℓ, yi1 , . . . , yis
}
)

+∑
j

β j{x0, uℓ, vℓ, zj1 , . . . , zjs−1
}.

For appropriate sets Ki and Lj (as in lemma 3.3), its differential is

dα2 =∑
i

γi ∑
k∈Ki

(−1)k
(
{x0, uℓ, yi1 , . . . , yis

} \{yik
}

− {x0, vℓ, yi1 , . . . , yis
} \ {yik

}
)

+ ∑
j

β j

(
{x0, uℓ, zj1 , . . . , zjs−1

} − {x0, vℓ, zj1 , . . . , zjs−1
}
)

+ ∑
j

β j ∑
k∈Lj

(−1)k+1{x0, uℓ, vℓ, zj1 , . . . , zjs−1
} \ {zjk}.
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But there is no term in α1 containing vℓ and dα1 + dα2 = 0. So, looking at the
terms with uℓ and vℓ in dα2, we deduce that

∑
j

β j ∑
k∈Lj

(−1)k+1{x0, uℓ, vℓ, zj1 , . . . , zjs−1
} \ {zjk} = 0.

Hence the terms in dα2 with only vℓ are such that

∑
i

γi ∑
k∈Ki

(−1)k{x0, vℓ, yi1 , . . . , yis
} \ {yik

}+ ∑
j

β j{x0, vℓ, zj1 , . . . , zjs−1
} = 0.

And this relation stays true if we replace vℓ by uℓ. So, we just proved that dα2 = 0,
which implies that dα1 = 0 as well. By the induction hypothesis, there exists a
ω1 ∈ Iℓ−1 such that dω1 = α1 and by lemma 3.3, there exists a ω2 ∈ Iuℓ,vℓ such
that dω2 = α2. So, α = d(ω1 + ω2 + ω). The vector subspace Iℓ is acyclic and the
proof by induction is complete.

3.2 A long exact sequence in cohomology

With the results proved in the previous section, it is fairly easy to prove the fol-
lowing theorem.

Theorem 3.6. Let A = {x0, . . . , xn} be a subspace arrangement in Cm, A′ = A \
{x0},A′′ = {x0 ∩ y |y ∈ A′}. Then, there exists a long exact sequence in cohomology :

· · · → Hq(M(A′), Q) → Hq(M(A), Q) → Hq−deg(x0)(M(A′′), Q)

→ Hq+1(M(A′), Q) → Hq+1(M(A), Q) → · · ·

Proof. From the short exact sequence

0 → D(A′) → D(A) → D(A)/D(A′) → 0,

we obtain a long exact sequence connecting the cohomology of those complexes.
By proposition 3.5, we have a quasi-isomorphism ϕ : D(A)/D(A′) → D(A′′).
From this, we obtain the promised long exact sequence.

3.3 Euler characteristic

The long exact sequence in cohomology of theorem 3.6 is quite powerful. In this
subsection, we give a first application : the Euler characteristic of M(A) is always
zero for any non-empty arrangements.

Corollary 3.7. Let A be a subspace arrangement in Cm. Then, the Euler characteristic
of M(A) is 1 if A is empty, and 0 otherwise.

Proof. If A is empty, then M(A) = Cm is contractible and χ(M(A)) = 1. If
|A| = 1, then M(A) = Cm \ {x0} for some vector subspace x0. So, M(A) has the
homotopy type of an odd-dimensional sphere and χ(M(A)) = 0.
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By the universal coefficient theorems (in homology and cohomology), we have :
bi(M(A)) = dim Hi(M(A), Q), where bi(M(A)) is the ith Betti number of M(A).
The long exact sequence in cohomology from theorem 3.6 gives us the follow-

ing formula : χ(M(A)) = χ(M(A′)) + (−1)deg(x0)χ(M(A′′)) = χ(M(A′)) −
χ(M(A′′)). Now, let us prove by induction on |A| that χ(M(A)) = 0. Suppose
that this is true for arrangements with n or less subspaces. Let A be an arrange-
ment with n + 1 subspaces and x0 ∈ A. Since |A′| = |A| − 1 and 1 ≤ |A′′| < |A|,
by induction, χ(M(A)) = χ(M(A′))− χ(M(A′′)) = 0 − 0 = 0.

Note that this is only true for complex subspace arrangements. Clearly, if
B is the real arrangement with one point in R3, then M(B) ≃ S2 and its Euler
characteristic is 2.

4 Poincaré polynomials

4.1 Inductive formulas

In subsection 3.3, we actually proved a formula to compute inductively the Euler
characteristic of the complement spaces :

χ(M(A)) = χ(M(A′)) + (−1)deg(x0)χ(M(A′′)).

In practice, it turns out that this formula is irrelevant since the Euler characteristic
is zero anyway. But the idea is interesting, and can (sometimes) be applied to a
finer topological invariant : the sequence of Betti numbers, or more precisely, the
Poincaré polynomial

Poin(M(A), t) =
∞

∑
i=0

bi(M(A))ti .

In some cases, we have a nice inductive formula.

Proposition 4.1. Let A = {x0, . . . , xn} be a subspace arrangement in Cm, A′ = A \
{x0}, and A′′ = {x0 ∩ y |y ∈ A′}. Then the following conditions are equivalent :

1. Poin(M(A), t) = Poin(M(A′), t) + tdeg(x0) Poin(M(A′′), t),

2. the long exact sequence of theorem 3.6 splits into short exact sequences

0→ Hq(M(A′), Q) → Hq(M(A), Q) → Hq−deg(x0)(M(A′′), Q) → 0,

3. the injective map D(A′) → D(A) induces an injective map H⋆(M(A′), Q) →
H⋆(M(A), Q).

Proof. It is an easy consequence from the long exact sequence in cohomology,
from theorem 3.6.
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Proposition 4.1 does not hold in general. Consider for instance the arrange-
ment A = {h0, h1, h2} in C5 where h0, h1 and h2 are defined by the equations
z1 = z5 = 0, z1 = z2 = z3 = 0 and z3 = z4 = z5 = 0, respectively.

Using the model D(A), we compute the Poincaré polynomials of M(A), M(A′)
and M(A′′) :

Poin(M(A), t) = 1 + t3 + 2t5 + 2t6,

Poin(M(A′), t) = 1 + 2t5 + t8,

Poin(M(A′′), t) = 1 + 2t3 + t4.

So, they don’t satisfy the relationship described in proposition 4.1, with deg(x0) =
deg(h0) = 3.

However, Orlik and Terao proved in [3] that the arrangements of hyperplanes
always satisfy the properties of proposition 4.1. In the next two subsections, we
will prove that some classes of arrangements have that property as well, namely
the arrangements with a separator and the arrangements with a geometric lattice.

4.2 Arrangements with a separator

The following definition is a generalization of the concept of separator found
in [3]. This is probably the simplest condition for the long exact sequence to split.

Definition 4.2. Let A = {x0, . . . , xn} be a subspace arrangement. We say that xi

is a separator if ∩{x0, . . . , xn} 6= ∩({x0, . . . , xn} \ {xi}).

As shown by the next theorem, deleted and restricted arrangements with re-
spect to a separator have the desired property.

Theorem 4.3. Let A = {x0, . . . , xn} be a subspace arrangement in Cm, A′ = A\{x0},
and A′′ = {x0 ∩ y |y ∈ A′}. If x0 is a separator, then the long exact sequence of
theorem 3.6 splits and we have

Poin(M(A), t) = Poin(M(A′), t) + tdeg(x0) Poin(M(A′′), t).

Proof. It is sufficient to show that the injective map j : D(A′) → D(A) induces
an injective map j⋆ : H⋆(D(A′)) → H⋆(D(A)). Let us define a map k : D(A) →
D(A′) of cochain complexes by k(σ) = 0 if x0 ∈ σ and k(σ) = σ if x0 6∈ σ. This
map commutes with the differential :

• If x0 6∈ σ, then dk(σ) = kd(σ),

• if x0 ∈ σ, then dk(σ) = 0 and kd(σ) = α(σ \ {x0}), with α = 0 if and only if
∩(σ \ {x0}) 6= ∨σ, which is the case because x0 is a separator.

So, the map k is a map of chain complexes and induces a map k⋆ : H⋆(D(A)) →
H⋆(D(A′)). Obviously, we have k⋆ j⋆ = id, which implies that j⋆ is injective.
Since the sequence of theorem 3.6 is exact, it splits as required.
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4.3 Arrangements with a geometric lattice

To each subspace arrangement A, we can associate an important combinatorial
tool : its lattice L(A), which is the set of all intersections of elements of A.

The set L(A) is ordered by reverse inclusion : x ≤ y if and only if x ⊇ y. We
define on the poset L(A) two operations, ∨ and ∧, which makes it a lattice :

x ∨ y = x ∩ y,

x ∧ y = ∩{z ∈ L(A) |x ∪ y ⊂ z} ∈ L(A).

When we have a lattice, it is useful to consider the rank function, rk : L(A) →
N.

Definition 4.4. The rank rk(x) is the length r of a maximal chain Cm < x1 < · · · <
xr = x of maximal length. The rank of Cm is rk(Cm) = 0.

For the rest of this section, we will be particularly interested in arrangements
with a geometric lattice.

Definition 4.5. The lattice L(A) is geometric if, for every x, y ∈ L(A), we have :

rk(x) + rk(y) ≥ rk(x ∧ y) + rk(x ∨ y).

It is well known that arrangements of hyperplanes have a geometric lattice
(see [3] for a proof).

Let us mention two interesting combinatorial results. First, Goresky and
MacPherson described the linear cohomology structure of the complement space.

Theorem 4.6 (Goresky-MacPherson). Let A be a subspace arrangement in Cm. Then

H̃i(M(A)) ≃
⊕

x∈L(A)\{Cm}

H̃2 codim(x)−2−i(∆(0, x)),

where ∆(0, x) denotes the order complex of the interval [Cm, x] in L(A).

On the other hand, Folkman (theorem 4.1 in [1]) proves that if L is a geometric
lattice with 0 and 1 as smallest and largest element, then the homology of its order
complex ∆(L) is

Hi(∆(L)) =

{
0 if i 6= rk L − 2,

Z|µ(0,1)| if i = rk L − 2,

where µ : L× L → Z is the Mœbius function, defined recursively by the relations :





µ(x, x) = 1 if x ∈ L,

∑z∈[x,y] µ(x, z) = 0 if x, y, z ∈ L and x < y,

µ(x, y) = 0 otherwise.

As a consequence, we have the following proposition :
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Proposition 4.7. If A is a subspace arrangement in Cm with a geometric lattice L(A),
then

Poin(M(A), t) = ∑
x∈L(A)

µ(0, x)(−t)2 codim x−rk(x).

Proof. It is almost a direct consequence of theorem 4.6 and the result of Folkman.
The only thing we need to check is the sign of µ(0, x). But a simple property of

the Mœbius function is that (−1)rk(x)µ(0, x) ≥ 0 (see for example theorem 2.47
in [3]).

The previous proposition is the key to prove a deletion-restriction formula for
arrangements with a geometric lattice. But we need first an interpretation of the
Mœbius function in the case of subspace arrangements.

Lemma 4.8. Let A be a subspace arrangement. For u, v ∈ L(A) with u ≤ v, let
Au = {x ∈ A |u ⊆ x} and S(u, v) = {B ⊆ A |Au ⊆ B and T(B) = v} (where T(B)
denotes the maximal element of L(B)). Then

µ(u, v) = ∑
B∈S(u,v)

(−1)|B\Au |.

Proof. This lemma is the same as lemma 2.35 in [3] except that A is not necessarily
an arrangement of hyperplanes. The proof of [3] is still valid in this case.

Now, a simple adaptation of the proofs in [3] gives the desired result.

Theorem 4.9. Let A = {x0, . . . , xn} be a subspace arrangement in Cm, A′ = A\{x0},
and A′′ = {x0 ∩ y |y ∈ A′}. If the lattice L(A) is geometric, then we have

Poin(M(A), t) = Poin(M(A′), t) + tdeg(x0) Poin(M(A′′), t)

and the long exact sequence of theorem 3.6 splits.

Proof. First, let us notice that for any arrangement A, we have

Poin(M(A), t) = ∑x∈L(A)
µ(0, x)(−t)2 codim x−rk(x)

= ∑x∈L(A)

(
∑B∈S(0,x)

(−1)|B|(−t)2 codim x−rk(x)
)

= ∑B⊆A
(−1)|B|(−t)2 codim T(B)−rk T(B).

The last equality come from the fact that every subarrangement B ⊆ A oc-
curs in a unique S(0, x). Now, separate the sum over B ⊆ A into two sums
R′ and R′′ with R′ the sum over those B which do not contain x0 and R′′ the
sum over those B which contain x0. Clearly, by using the previous equality, we
have R′ = Poin(M(A′), t). So we proved that Poin(M(A), t) is equal to the sum
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Poin(M(A′), t) + R′′. Now, let us compute R′′.

R′′ = ∑x0∈B⊆A
(−1)|B|(−t)2 codim T(B)−rk(B)

= ∑v∈L(A′′) ∑
B∈S(x0,v)

(−1)|B|(−t)2 codim v−rk(v)

= −∑v∈L(A′′) ∑
B∈S(x0,v)

(−1)|B\Ax0
|(−t)2 codim v−rk(v)

= −∑v∈L(A′′)
µ(x0, v)(−t)2(codim v−codim x0)−(rk(v)−1)+2 codim(x0)−1

= t2 codim x0−1 Poin(M(A′′), t) = tdeg(x0) Poin(M(A′′), t).

The third line comes from lemma 4.8 and the last line comes from the fact that
(codim v − codim x0) is equal to the codimension of v, seen in the ambient space
of A′′, and that rk(v)− 1 is the rank of v in L(A′′). This complete the proof of the

fact that Poin(M(A), t) = Poin(M(A′), t) + tdeg(x0) Poin(M(A′′), t).

4.4 Additional results

When we suppose that the arrangement A has a geometric lattice and that there
is a subspace x0 which is a separator, we have some stronger results. First, let us
prove the following lemma.

Lemma 4.10. Let A = {x0, . . . , xn} be a subspace arrangement with a geometric lattice
such that x0 is a separator and 1 ≤ i1 < . . . < ir+1 ≤ n. Then the following conditions
are equivalent :

1. ∨{xi1 , . . . , xir} = ∨{xi1 , . . . , xir , xir+1
},

2. ∨{x0, xi1 , . . . , xir} = ∨{x0, xi1 , . . . , xir , xir+1
}.

Proof. Clearly, the condition (1) implies the condition (2). Suppose that we have

∨{x0, xi1 , . . . , xir} = ∨{x0, xi1 , . . . , xir , xir+1
}.

Since x0 is a separator, ∨{x0, . . . , xn} 6= ∨({x0, . . . , xn} \ {x0}). An easy conse-
quence is that ∨{x0, xi1 , . . . , xir} 6= ∨{xi1 , . . . , xir}. Since the lattice is geomet-
ric, we can obtain the maximal chain (longest strictly increasing sequence be-
tween two elements) ∨{xi1 , . . . , xir} < ∨{x0, xi1 , . . . , xir} from the maximal chain
Cm < x0. Therefore, we have the two following chains of inequalities :

∨{xi1 , . . . , xir} < ∨{x0, xi1 , . . . , xir} = ∨{x0, xi1 , . . . , xir+1
},

∨{xi1 , . . . , xir} ≤ ∨{xi1 , . . . , xir+1
} < ∨{x0, xi1 , . . . , xir+1

}.

Since the lattice is geometric, all maximal chains between two fixed elements have
the same length (see [2] for a proof). The first line is a maximal chain of length 2,
so the second line has the same length and we have the equality ∨{xi1 , . . . , xir} =
∨{xi1 , . . . , xir+1

}.
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Lemma 4.11. Let A be a subspace arrangement with a geometric lattice and A′,A′′ the
deleted and restricted arrangements with respect to x0 ∈ A. If x0 is a separator, then
there exists an isomorphism H⋆(M(A′); Q) → H⋆(M(A′′); Q) of Z2-graded vector
spaces.

Proof. Let us define a map θ : D(A′) → D(A′′) by sending the element {xi1 , . . . , xir}
to {x0 ∩ xi1 , . . . , x0 ∩ xr}. It is obviously a surjection. If x0 ∩ xi = x0 ∩ xj, then
x0 ∩ xi = x0 ∩ xi ∩ xj, and by lemma 4.10, xi = xi ∩ xj, which is impossible (we
always suppose that A does not have two subspaces x and y such that x ⊂ y). So,
the map θ is a bijection.

To show that θ commutes with the differential, consider σ = {xi1 , . . . , xir} and
let

J1 = {j |1 ≤ j ≤ r and ∨ σ = ∨(σ \ {xij
})},

J2 = {j |1 ≤ j ≤ r and ∨ (σ ∪ {x0}) = ∨(σ ∪ {x0} \ {xij
})}.

We have :

θ(dσ) = ∑
j∈J1

(−1)j{x0 ∩ xi1 , . . . , xir ∩ xir} \ {x0 ∩ xij
},

d(θ(σ)) = ∑
j∈J2

(−1)j{x0 ∩ xi1 , . . . , xir ∩ xir} \ {x0 ∩ xij
}.

Lemma 4.10 shows that J1 = J2, so θ commutes with the differential. Therefore,
the map in cohomology H⋆θ : H⋆(M(A′); Q) → H⋆(M(A′′); Q) is an isomor-
phism of vector spaces.

Finally, let σ = {xi1 , . . . , xir} ∈ D(A′). It is mapped to {x0 ∩ xi1 , . . . , x0 ∩ xir} ∈
D(A′′). We have :

deg σ − deg θ(σ) = (2m − 2 dim∨σ − r)− (2 dim x0 − 2 dim(x0 ∩ ∨σ)− r)

= 2m − 2 dim(x0 + ∨σ) = 2 codim(x0 + ∨σ)

So, θ decreases the degree by an even number.

Notice that when the subspace x0 is also an hyperplane, the map θ does not
change the degree. So, we have a stronger result.

Proposition 4.12. Let A be a subspace arrangement with a geometric lattice and A′,A′′

the deleted and restricted arrangements with respect to x0 ∈ A. If x0 is an hyperplane
and a separator, then

Poin(M(A), t) = (1 + t)Poin(M(A′′), t).

Proof. Let σ ⊆ A′. Since x0 ∩ ∨σ 6= ∨σ, we have ∨σ 6⊂ x0. But x0 is an hyper-
plane, so codim(x0 + ∨σ) = 0. Therefore, the map H⋆θ of lemma 4.11 preserves
the degree and is an isomorphism of graded vector spaces. This implies that
Poin(M(A′), t) = Poin(M(A′′), t). Using theorem 4.3, we obtain directly the de-
sired relation.



Recursion for Poincaré polynomials of subspace arrangements 53

An interesting example is when A is an arrangements of n hyperplanes in
general position (meaning that codim∩x∈Ax = ∑x∈A codim x). In that case, the
lattice L(A) is geometric and it is not hard to see that every subspace is a separa-
tor, in every restricted arrangement. So, by proposition 4.12, we can see that

Poin(M(A), t) = (1 + t)n.

It directly implies that M(A) satisfies Poincaré duality. It can be shown that
M(A) has in this case the homotopy type of a product of n spheres S1.
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