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Abstract

We prove that from among simple multiveblen configurations only com-
binatorial Grassmannians can be embedded into a Desarguesian projective
space. The class of regular multiveblen configurations which are projectively
embeddable is determined.

Introduction

The class of multiveblen configurations was introduced in [11]. The aim of this
note is to determine which multiveblen configurations can be embedded into a
Desarguesian projective space (comp. [14] (and [5]) for more information on con-
figurations in projective geometry).

The Veblen (or Veblen-Young) configuration is a well known classical
(

62 43

)

-con-

figuration of projective geometry1. Sometimes it is also called a Pasch Configura-
tion, though the original Pasch configuration originates in ordered (Euclidean)
geometry, while no geometrical order is involved in the definition of the Veblen
configuration. A multiveblen configuration (in short: MVC) is a partial Steiner
triple system (i.e. a partial linear space with the lines of size 3, cf. [13]), whose
construction generalizes the construction of the Desargues configuration and of
the 103G-configuration of Kantor consisting in completing three Veblen config-
urations on three concurrent lines by a single new line (see Figure 1). Loosely

1Formally, it consists of four pairwise intersecting lines, no three concurrent, together with the
corresponding intersection points.
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speaking, a multiveblen configuration M = M
p
n⊲H (shorter: M = Mn⊲H) can be vi-

sualized as a system of (n
2) Veblen configurations on n concurrent lines of the size

3 (through a point p) completed by another multiveblen configuration H (of the
form H = Mn−2⊲H

′, or by some “combinatorial Grassmannian” H), whose lines
join “second points of intersection” in the corresponding Veblen configurations.
This verbal presentation does not characterize M uniquely; the additional param-
eter P , a graph on n vertices is used to make the definition correct and we write
M = M

p
n⊲P

H (cf. 1.1).
The class of multiveblen configurations contains, in particular, structures

which generalize the Desargues configuration considered as a perspective of two
triangles, and which can be visualized as a perspective of two n-simplices in a
projective space. These structures can also be represented in a pure combinato-
rial way as combinatorial Grassmannians G2(n + 2) (cf. [10]).

In a sense, a multiveblen configuration was invented as a solution of a (rather
technical) problem to construct and classify sufficiently regular configurations in
which any two lines through a given (fixed) point yield a Veblen configuration.
This was the idea of constructing structures defined in [11], of the form M

p
n⊲P

H

with arbitrary H. A huge variety of the obtained structures2 forced us to restrict
ourselves in the paper to the case when H is again a multiveblen configuration,
or a combinatorial Grassmannian. In essence, equivalently, we could require that
H is a MVC, a point, or a line of size 3. In any case the multiveblen configurations
seem interesting on their own, due to their simple and well visualizable internal
structure, and close connections with the (classical) Veblen configuration. Since
the Veblen axiom is a fundamental axiom of projective geometry, multiveblen
configurations can be considered as, loosely speaking, locally projective (for a
system of pairwise not collinear points). Then the question which of them are
“really” projective i.e. which can be realized in a (Desarguesian) projective space
seems natural.

Clearly, both combinatorial Grassmannians and the 103G configuration can be
embedded into a projective space. In our note we prove that these are the only
simple MVC (i.e. those M where H is a combinatorial Grassmannian) which can
be projectively embedded. The problem to characterize all the projectively em-
beddable MVC is much more complex because the class of all MVC contains con-
figurations of various quite irregular structure. We distinguish the class of regular
MVC and prove that in this class, besides combinatorial Grassmannians exactly
one new series of projectively embeddable structures appear; configurations in
this series generalize the 103G configuration.

1 Notation

First, we briefly recall the definitions of the structures considered in the paper.
Let X be a nonempty set and k be an integer; we write ℘

k(X) for the family of
k-element subsets of X. Two graphs on X are especially important (cf. [16]):

the empty graph NX = 〈X, ∅〉 and the complete graph KX = 〈X,℘2(X)〉.

2See e.g. [12] for a detailed discussion of the case when the degree n of p is 4 – there are at least
11 distinct isomorphism types of such structures.
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Frequently, only the type of a graph will be needed; we write Kn for the type of
KX where |X| = n, and similarly Nn for the type of NX. In what follows we shall
also frequently identify a set P ⊂ ℘

2(X) with the graph 〈X,P〉. If P ⊂ ℘
2(X)

and Y ⊂ X we write PfY for the graph P ∩ ℘
2(Y). Given an ordering x1, . . . , xn

of the elements of X we write

Ln for the type of the linear graph 〈X,
{

{x1, x2}, {x2, x3}, . . . , {xn−1, xn}
}

〉.

The structure

G2(X) := 〈℘2(X),℘3(X),⊂〉 ∼= 〈℘2(X),
{

℘
2(Y) : Y ∈ ℘

3(X)
}

,∈〉

is referred to as a combinatorial Grassmannian (cf. [10], [11], [9])3. Then G2(|X|)
is the type of G2(X) – it is a

(

(n
2)n−2 (

n
3)3

)

-configuration (n = |X|; generally, a
(

νr bκ

)

-configuration is a configuration with ν points of degree r each and b lines
of size κ each), so it is a partial Steiner triple system. In particular, G2(5) is the
Desargues configuration (cf. [7]).

Construction 1.1. Let H = 〈℘2(X),L〉 be a partial Steiner triple system and P
be a non-oriented graph without loops defined on X. We take any two distinct
elements p1, p2 /∈ X and put p = {p1, p2}, X′ = X ∪ p. Consider the following
families of blocks:

L1 =
{

{

{p1, p2}, {p1, i}, {p2, i}
}

: i ∈ X
}

,

L2 =
{

{

{i, j}, {p1, i}, {p2, j}
}

, : i, j ∈ X, i 6= j, {i, j} /∈ P
}

,

L3 =
{

{

{i, j}, {p1, i}, {p1, j}
}

,
{

{i, j}, {p2, i}, {p2, j}
}

: i, j ∈ X, {i, j} ∈ P
}

.

The structure 〈℘2(X
′),L ∪ L1 ∪ L2 ∪ L3〉 will be denoted by M

p
X⊲PH and it will

be called the multiveblen configuration with center p, consistency graph P defined on
X, and axial configuration H. A multiveblen configuration is simple if it has a com-
binatorial Grassmannian as its axial configuration.

A particular role is played in the sequel by the structure

PB(X) = M
p
X⊲NX

G2(X).

We write PB(n) := PB(X), where |X| = n, for short. ©

It is easy to note that

M
p
X⊲KX

G2(X) = G2(X ∪ p).

The structure Vo := PB(3) is the 103G-configuration of Kantor (cf. [6]); in the
paper this one will also be called the Veronese configuration.4 The line G2(X) of

3Classical Grassmann space, as considered in geometry, is an incidence structure defined over
the lattice of subspaces of a projective space, cf. [15]. Its points are the k-dimensional subspaces
(k ≥ 1 is a fixed integer) and its lines are the pencils. If k+ 1 is less than the dimension of the space
then an equivalent structure is obtained when we adopt the (k + 1)-dimensional subspaces as the
lines (and inclusion as the incidence). Passing to the lattice of subsets of a set X and replacing
dimension by cardinality we define, by analogy, the combinatorial Grassmannian Gk(X).

4This terminology may be justified by the fact that Vo is isomorphic with one of the combinato-
rial Veronese spaces, cf. [9], [8] (which on the other hand, generalize classical projective Veronese
spaces, cf. [15], [3]). In general, (see [11, Prop. 6]) the incidence structure PB(n) is isomorphic to
the dual of a suitable combinatorial Veronese space (i.e. isomorphic to V∗

n(3) dual to Vn(3) in the
notation of [9]).
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Vo = PB(X) is referred to as the axis of Vo.

The Desargues Configuration The 103G configuration
(the Veronese Configuration)

Figure 1: Three Veblen configurations may yield two 103 configurations.

Fact 1.2. If H is a
(

(n
2)n−2

(n
3)3

)

-configuration then M
p
X⊲P

H is a
(

(n+2
2 )

n
(n+2

3 )
3

)

-confi-
guration.

The construction of the structure M
p
X⊲P

H can be visualized in a more geomet-
rical vein, which is more convenient in the analysis of the obtained configura-
tions. Let us adopt the notation of 1.1. Next, write

ai = {p1, i}, bi = {p2, i} for i ∈ X

and

cz = z for z ∈ ℘
2(X), C =

{

cz : z ∈ ℘
2(X)

}

.

Step A The set p is an arbitrary “abstract new point”.

Step B Through p we have the lines Li, and the points ai, bi on Li, for every i ∈ X.

Step C We have a subset P of ℘2(X) distinguished, and after that

if {i, j} ∈ P : we draw lines Ai,j = ai, aj and Bi,j = bi, bj; the point c{i,j} is
common for Ai,j and Bi,j,

if {i, j} ∈ ℘
2(X) \ P : we draw lines Gi,j = ai, bj; the point c{i,j} is common

for Gi,j and Gj,i,

for every {i, j} ∈ ℘
2(X). It is seen that the point p and the points ai, bi

(i ∈ X) have degree n, while (up to now) cz with z ∈ ℘
2(X) has degree 2.

Moreover, the number of the points cz is (n
2).

The quadruple of lines (Li , Lj, Ai,j, Bi,j) ((Li , Lj, Gi,j, Gj,i) resp.) with any
distinct i, j ∈ X yields a classical Veblen configuration.
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Step D Let H be any
(

(n
2)n−2

, (n
3)3

)

-configuration. Finally, we identify the points
cz constructed above with points of H (under some bijection γ) and, con-
sequently, we group the points cz into (n

3) new lines obtained as coimages
of the lines of H under γ.

The resulting configuration will be written as M
p
X⊲

γ

P
H. If the point set of H is

℘
2(X) it is natural to put γ : c{i,j} 7−→ {i, j}; comparing with 1.1 we see that

M
p
X⊲

γ

P
H ∼= M

p
X⊲P

H.

The above interpretation justifies the term multiveblen used to name structures of
the form M

p
X⊲P

H.

A multiplied multiveblen configuration (more precisely: a multiplied simple mul-
tiveblen configuration) is any structure of the form

M = M
pk

Xk−1
⊲
Pk−1

. . . (M
p2

X1
⊲
P1
(M

p1

X0
⊲
P0

G2(X0))), (1)

where pj are two-element sets, the set X0 and the pj are pairwise disjoint, Xj =

Xj−1 ∪ pj for j = 1, . . . , k, and Pj is a graph defined on Xj for j = 0, . . . , k − 1.

In most parts we shall consider a “standard” representation of the structure
defined by (1) taking X0 := {1, . . . , m} (m ≥ 2) and pj := {m + 2j, m + 2j − 1}.

The structure M of the form (1) is a simple multiveblen configuration if k = 1.

Let P ′,P ′′ be two graphs on a set X. We write P ′ ≈ P ′′ if and only if there is a
sequence µx1

, . . . , µxs of maps (x1, . . . , xs ∈ X) such that the composition µx1
. . . µxs

maps P ′ onto P ′′ and every µxj
switches connections with the vertex xj: xj, y are

connected in µxj
(P) if and only if they are not connected in P , for an arbitrary

graph P and y ∈ X.

Fact 1.3 ((cf. [11, Prop. 9])). If H is any partial Steiner triple system defined on the set
℘

2(X), p is a two-element set disjoint with X, and P ′, P ′′ are graphs defined on X then
P ′ ≈ P ′′ yields M

p
X⊲P ′H

∼= M
p
X⊲P ′′H.

A suitable converse variant of 1.3 is also provable:

Theorem 1.4. Let |X| ≥ 5. If there is an isomorphism of M
p1

X ⊲
P1
H1 onto M

p2

X ⊲
P2
H2

which maps p1 onto p2 then H1
∼= H2 and then there is a graph P3 such that P1 ≈

P3
∼= P2. If M

p′

X⊲P1
G2(X) ∼= M

p′′

X ⊲
P2

G2(X) then there is a graph P3 such that

P1 ≈ P3
∼= P2.

A detailed classification of the simple multiveblen configurations M
p
X⊲P

G2(X)
with |X| ≤ 5 is presented in [11]. One result of that investigations will also be
used here:

Fact 1.5. Let P be a graph on a set Y and X ∈ ℘
4(Y). Then PfX ≈ N4, PfX ≈ K4,

or PfX ≈ L4.
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2 Projective embeddings

In what follows by a projective embedding of a configuration K = 〈S,L〉 or an
embedding of K into a projective space P we mean an injective map which associates
with the elements of S points of P and with the elements of L lines of P and
which preserves (in both directions) the incidence (comp. [4]). As a rule, in the
sequel we consider only embeddings into Desarguesian spaces.

Clearly, G2(n) ∼= Mn−2⊲Kn−2
G2(n − 2) has a standard projective embedding

into PG(n, 2) (much interesting information on projective embeddings of the struc-
tures G2(n) can also be found in [2]).

Now, we continue some remarks concerning projective embeddings of the
structure Vo = PB(3) given in [9].

Fact 2.1 ([9, Prop. 5.3]). If Vo is embedded into a projective space P then Vo lies on a
plane of P.

Lemma 2.2. Let us assume that the configuration Vo is embedded into a projective space.
Then the lines ai, aj and bi, bj meet on the axis of Vo for every 1 ≤ i < j ≤ 3.

Proof. From [9, Prop. 5.3], Vo lies on a projective plane Π and one of the following
holds:

a) There are lines A, B of Π such that a1, a2, a3 lie on A and b1, b2, b3 lie on B.

b) There is a conic S in Π such that the ai and the bj lie on S .

In the corresponding cases we prove our claim as follows:
a) Let {i, j, l} = {1, 2, 3}. From the Desargues theorem applied to the trian-

gles (ai , bl, aj) and (bi, al , bj) we infer that the lines ai, aj, bi, bj meet on the line

c{i,l}, c{l,j}, which is the axis of Vo.
b) The point p is the pole of the axis L of Vo conjugated under S i.e. it is the
center of the harmonic homology f with axis L, which leaves S invariant. Since f

interchanges the lines ai, aj and bi, bj, these lines meet on the axis of f , as required.

Proposition 2.3. Let P be a graph on n-element set X, let Y ∈ ℘
4(X) such that

PfY ≈ L4 or PfY ≈ N4. Then there is no projective embedding of the structure
M

p
X⊲P

G2(X) (in short: of Mn⊲P
G2(n)).

5

Proof. It suffices to prove that there is no projective embedding of the structure
B := M

p

{1,2,3,4}
⊲
P ′G2({1, 2, 3, 4}), where P ′ = L4 =

{

{1, 2}, {2, 3}, {3, 4}
}

or

P ′ = N{1,2,3,4}. It is seen that B contains two Vo-configurations V1,V2 with the
common center p spanned by the lines L2, L3, L1 and L2, L3, L4 respectively.

Suppose that B is embedded into a projective space. From 2.1, V1,V2 lie in
corresponding planes Π1, Π2 which now have two distinct lines L2, L3 in com-
mon; thus Π1 = Π2 =: Π. Let Mi be the axis of Vi. From the definition, Mi passes
through c{2,3} and from 2.2 we get that Mi passes through the common point of

the lines a2, a3, b2, b3. Consequently, M1 = M2, which does not hold in B.

5Note, that in the case of P = NX Proposition 2.3 is also a direct consequence of [9, Theorem
5.10].
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The following technical lemma will be useful in the sequel.

Lemma 2.4. Let P be the graph on the n-element set X such that Pf A ≈ K3 for every
A ∈ ℘

3(X). Then P ≈ Kn and Mn⊲P
G2(n) ∼= G2(n + 2).

Proof. Suppose that P = ∅; then Pf A ≈ N3 which contradicts assumptions.
Thus there is an edge (say e = {1, 2}) of P . For arbitrary i ∈ X \ e, since
Pf(e ∪ {i}) ≈ K3, either {1, i}, {2, i} ∈ P or {1, i}, {2, i} /∈ P . Let us set

X+ :=
{

i : {1, i} ∈ P
}

and X+ :=
{

i : {1, i} /∈ P
}

.

Observing triples {i, j, 1} with i, j ∈ X \ e we get

i, j ∈ X+ or i, j ∈ X− =⇒ {i, j} ∈ P

i ∈ X+, j ∈ X− =⇒ {i, j} /∈ P .

The composition of all the maps µi with i ∈ X− transforms P onto Kn.

Now we are in a position to prove a first important result:

Theorem 2.5. Let P be an arbitrary graph on n (n ≥ 4) vertices such that
B := Mn⊲P

G2(n) 6∼= G2(n + 2). Then B cannot be embedded into a projective space.

Proof. Let X = {1, . . . , n} be the set of the vertices of P . From the assumption and
2.4, there is A ∈ ℘

3(X) such that P0 := Pf A 6≈ K3 and thus P0 ≈ N3. Without
loss of generality we can assume that A = {1, 2, 3} and

P0 =
{

{1, 2}, {1, 3}
}

or P0 = ∅.

Applying µ1, if necessary, we assume that P0 =
{

{1, 2}, {1, 3}
}

.
Observe A′ = A ∪ {4} and P ′ = Pf A′. Note that a graph equivalent to

K4 defined on A′ is one of the following: K4, a triangle C3 embedded into A′, or
consisting of two disjoint edges. Restriction of no one of them is the path P0 and
thus P ′ ≈ N4 or P ′ ≈ L4. In any case from 2.3 and 2.3 we get that the substructure
M4⊲P ′G2(A′) of B cannot be projectively embedded.

The result of 2.5 can also be read as follows:

Corollary 2.6. Let B be a simple multiveblen configuration with point degree at least
4. Then B can be embedded into a projective space if and only if B is a generalized
Desargues configuration (a combinatorial Grassmannian).

A direct analogue of 2.6 for multiplied multiveblen configurations does not
hold.

Proposition 2.7. The structure

M = M
{5,6}
{1,2,3,4}

⊲
P
PB(2), where PB(2) = M

{3,4}
{1,2}

⊲
N{1,2}

G2({1, 2}).

can be embedded into a Desarguesian projective space if and only if P is equivalent to the
linear graph

{

{1, 2}, {1, 3}, {2, 4}
}

. If M is embedded into a projective space then a3, a4

and b3, b4 pass through c{1,2} as well.
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Proof. From the definition, the following triples

V1 :=
{

{3, 4}, {1, 3}, {1, 4}
}

, V2 :=
{

{3, 4}, {2, 3}, {2, 4}
}

,

V3 :=
{

{1, 2}, {1, 3}, {2, 4}
}

, V4 :=
{

{1, 2}, {1, 4}, {2, 3}
}

.

are the lines of the Veblen configuration PB(2).
Let Di be the restriction of M spanned by the lines Li, L3, L4 for i = 1, 2. Then

Di is either a Desargues or a Veronese Vo configuration with the axis Vi.
Let us assume that M is embedded into a projective Desarguesian space P.

For every two distinct i1, i2 in {1, 2, 3, 4} we have in M a Veblen configuration
inscribed into the lines Li1 , Li2 and the point c{i1,i2} is the point of intersection
of the corresponding lines of M. Let us denote by c∗

{i1,i2}
the intersection point

(considered in P) of the lines

– ai1 , bi2 , bi1 , ai2 when {i1, i2} ∈ P and of

– ai1 , ai2 , bi1 , bi2 when {i1, i2} /∈ P .

The point c{1,2} is determined by the structure of PB(2) as the intersection point

of the lines c{1,3}, c{2,4} = V3 and c{1,4}, c{2,3} = V4. In any case two possibilities
arise:

(a) c{1,2} a1, a2, b1, b2 (i.e. {1, 2} ∈ P), or

(b) c{1,2} a1, b2, b1, a2 (i.e. {1, 2} /∈ P).

Step 1: Assume, first, that D1 and D2 both are Desargues configurations.
Without loss of generality we can assume that the given Desargues configura-
tions represent a perspective of the triangles (a1, b3, a4), (b1, a3, b4) – in D1 and
(a2, b4, a3), (b2, a4, b3) – in D2. Consequently, in this case

{1, 4}, {2, 3} are in P , {1, 3}, {3, 4}, {2, 4} are not in P .

Let us analyze the two possibilities (a) and (b).
Ad (a): Applying several times the Desargues axiom we get c∗

{3,4}
, c{1,2} V3, V4

and thus the equality c∗{3,4} = c{1,2} must hold.

Ad (b): From the Desargues axiom applied to the triangles a1, b2, b3 and b1, a2, a3

we obtain L(c{1,2}, c{1,3}, c{2,3}), which gives c{2,3} V3. Thus c{1,2}, c{2,3} V3, V4

yields, contradictory, V3 = V4.
Step 2: Next, assume that D1 is a Desargues configuration and D2 is a Vero-

nese configuration. Without loss of generality we can label the points on the lines
Li in such a way that D1 represents the perspective of the triangles (a1, a3, b4) and
(b1, b3, a4), and D2 contains the closed hexagon (a2, b4, a3, b2, a4, b3). In this case

{1, 3} is in P , {2, 3}, {3, 4}, {2, 4}, {1, 4} are not in P .

Let us analyze the two possibilities (a) and (b).
Ad (a): Note that the points a1, a2, b4 are not collinear (otherwise an extra inci-
dence b4 a1, a2 holds in M) and, analogously, b1, b2, a4 are not collinear. From
the Desargues axiom we have L(c{1,2}, c{2,4}, c{1,4}), so c{2,4} V4 which gives
V3 = V4.
Ad (b): Since b2 6 a1, a3 the points a1, a3, b2 are not collinear. From the Desar-
gues axiom we infer that L(c{1,3}, c{2,3}, c{1,2}); then c{2,3} V3 and thus V3 = V4.
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Step 3: Finally, let us assume that D1 and D2 both are Veronese configura-
tions. From 2.2 we get that c{3,4}, c∗{3,4} V1, V2, which yields a contradiction.

Therefore, only in the case analyzed in Step 1 we can expect that M can be
embedded into a projective space. On the other hand, let P be the projective
3-space over a field with characteristic 6= 2 and let β be a scalar with β 6= 1,−1. It
is a matter of a simple computation that the following map embeds M into P:

p 7−→ [1, 0, 0, 0],

a1 7−→ [1, 1,−1, 1], a2 7−→ [1, 1, 1, 1], a3 7−→ [1, 1,−1,−1], a4 7−→ [1, 1, 1,−1],

b1 7−→ [1, β,−β, β], b2 7−→ [1, β, β, β], b3 7−→ [1, β,−β,−β], b4 7−→ [1, β, β,−β],

c{1,2} 7−→ [0, 0, 1, 0], c{2,3} 7−→ [0, 0, 1, 1], c{1,4} 7−→ [0, 0, 1,−1],

c{1,3} 7−→ [1 + β, 2β,−2β, 0],

c{2,4} 7−→ [1 + β, 2β, 2β, 0], c{3,4} 7−→ [1 + β, 2β, 0,−2β]. (2)

provided that P consists of the edges {1, 2}, {1, 4}, and {2, 3}.

Let R4 be the projectively embeddable
(

154 203

)

-multiveblen configuration
constructed in the proof of 2.7. It is evident that R4 is not isomorphic to G2(6), the
second projectively embeddable

(

154 203

)

-multiveblen configuration. A picture
of R4 is presented in Figure 2.

Generally, investigations on general (iterated) multiveblen configurations are
much more complex. The main reason is that a representation of a multiveblen
configuration M in the form (1) is not unique in the sense that M does not deter-
mine k, nor |X0|, nor the Pi. Let us point out three simple examples. Let p, q, r be
pairwise disjoint two-element sets.
Mr

p∪q⊲Kp∪q

(

M
q
p⊲Kp

G2(p)
) ∼= Mr

p∪q⊲Kp∪q
G2(p ∪ q)

– k in (1) is not determined by the configuration M.
Mr

p∪q⊲Kp∪q
PB(p) ∼= Mr

p∪q⊲Kp∪q

(

M
q
p⊲Np

G2(p)
) ∼= Mr

p∪q⊲L4
G2(p ∪ q)

(cf. [11, Prop. 18]) – a multiveblen configuration M
r
X⊲PH defined in 1.1 does

not determine its consistency graph P and its axial configuration H.
Mr

p∪q⊲Kp∪q

(

M
q
p⊲Np

G2(p)
) ∼= Mr

p∪q⊲Kp∪q
PB(p) 6∼=

6∼= G2(p ∪ q ∪ r) ∼= Mr
p∪q⊲Kp∪q

(

M
q
p⊲Kp

G2(p)
)

even though Np ≈ Kp. This yields, in particular, that even if P ′
0 ≈ P ′′

0 the

two structures Mr
X0∪q⊲P1

M
q
X0
⊲
P ′

0
G2(X0) and Mr

X0∪q⊲P1
M

q
X0
⊲
P ′′

0
G2(X0) may stay

nonisomorphic (comp. 1.3).

Let us say that a multiveblen configuration M is regular if and only if it can
be represented in the form (1), where Pi−1 = Pi fXi−1 for i = 1, . . . , k − 1. To
determine possible projective embeddings of regular multiveblen configurations
we use intensively the following lemma, which follows from 2.7 and 2.3.

Lemma 2.8. Let M = M
q
X∪p⊲P1

(

M
p
X⊲P0

G2(X)
)

, where |X| ≥ 2, p, q are two-element

sets such that X, p, q are pairwise disjoint, P1 is a graph on X ∪ p, and P0 = P1 fX.
Assume that M has a projective embedding. Then the following holds:
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a1

a2

b4

b3

b2

b1

a3

a4

c24

c34

c13

c23

p

c12

c14

We see that while G2(6) repre-
sents a perspective of two tetra-
hedrons (cf. [10]), the con-
figuration R4 also represents
a perspective, a perspective
of some kind of two 4-tuples
(a1, a2, a3, a4) and (b1, b2, b3, b4).
A perspective of the same type
can be seen with the point c{3,4}
as the perspective center.
Note also that the Desargues
axiom applied to this config-
uration forces the line which
joins intersection points of the

lines in pairs (a1, a3, a2, a4) and

(b1, b3, b2, b4) to pass through p.

Figure 2: The projectively embeddable
(

154 203

)

-multiveblen configuration R4,
constructed in the proof of 2.7.

(i) |℘2(X) \ P0| ≤ 1 (i.e. either P0 is the complete graph KX or it is KX with exactly
one edge deleted).

(ii) If |℘2(X) \ P0| = 1 then |X| ≤ 3.

(iii) One of the following three conditions holds:

1. P1 contains p and every pair {s, t} with s ∈ p and t ∈ X,
2. P1 contains p and {s, t} /∈ P1 for every s ∈ p, t ∈ X,

3. p /∈ P1, {i2, t} /∈ P1 and {i1, t} ∈ P1 for every t ∈ X, where p = {i1, i2}.

In every one of the above three cases either P1 ≈ KX∪p or P1 is equivalent to KX∪p

with one edge (taken from ℘
2(X)) deleted.

Keeping in mind the equality G2(X ∪ p) ∼= M
p
X⊲KX

G2(X) we see that every
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combinatorial Grassmannian G2(X) can be presented in the form (1), where ei-
ther |X0| = 2 and then the series (1) begins with a single point G2(X0) = G2(2),
or |X0| = 3 and then (1) begins with a single line G2(X0) = G2(3).

Let n ≥ 2 be an integer. We define the regular multiveblen configuration Rn

as follows. If n = 2k for some integer k then we take m = 2, if n = 2k + 1 we set
m = 3; in both cases we obtain n = m + 2(k − 1). Let q = {1, 2}, X = {1, . . . , m},
pj = {m+ 2j − 1, m+ 2j} for j = 1, . . . , k; in particular, pk = {m+ 2k− 1, m+ 2k}.
Let P = ℘

2(X ∪ p1 ∪ . . . ∪ pk−1) \ {q}. If m = 2 then P0 := PfX = NX ; if m = 3
then P0 ≈ NX. Let us put Pj = Pf(X ∪ p1 ∪ . . . ∪ pj) for 0 < j < k. We set

Rn := M
pk

X∪p1∪...∪pk−1⊲Pk−1

(

. . .
(

M
p2

X∪p1⊲P1
(M

p1

X ⊲
P0

G2(X)
)

. . .
)

.

In particular, R2 is simply PB(q), R3
∼= PB(3) is the Veronese configuration Vo, and

(up to an isomorphism) R4 is the configuration on Figure 2, defined in the proof

of 2.7. In general, Rn is a
(

(n+2
2 )

n
(n+2

3 )
3

)

-configuration. Intuitively, we can write

Rn+2 = Mn⊲Pn−1
Rn.

Construction 2.9. Let X = {1, 2, 3}, r = {1, 2}, p1 = p = {4, 5}, p2 = q = {6, 7},
and let P1 = ℘

2(X ∪ p) \ r be a graph on X ∪ p; let P0 = P1 fX. Evidently

P0 ≈ NX and thus M1 := M
p
X⊲P0

G2(X) ∼= Vo is a Veronese configuration. By

definition, R5 = M
q
X∪p⊲P1

M1. Next, let P be the projective 3-space over a field

with characteristic unequal to two and let β, γ be two scalars such that γ, β 6=
1,−1, 0 and γ 6= 2,−2. Let us consider the following map F defined on the points
of R5:

q 7−→ [1, 0, 0, 0], q′ = p = c{4,5} 7−→ [1 + β, 2β, 0,−2β],
a1 7−→ [1, 1,−1, 1], b1 7−→ [1, β,−β, β], a2 7−→ [1, β, β, β], b2 7−→ [1, 1, 1, 1],
b4 7−→ [1, 1,−1,−1], a4 7−→ [1, β,−β,−β], b5 7−→ [1, β, β,−β], a5 7−→ [1, 1, 1,−1],
c′{1,2} := c{1,2} 7−→ [0, 0, 1, 0],

a′2 := c{2,4} 7−→ [0, 0, 1, 1], b′1 := c{1,5} 7−→ [0, 0, 1,−1],
a′1 := c{1,4} 7−→ [1 + β, 2β,−2β, 0], b′2 := c{2,5} 7−→ [1 + β, 2β, 2β, 0],
a3 7−→ [1, γu, u, γu], b3 7−→ [1, γv, v, γv],

where u = 2β
γ(1+β)+β−1

, v = 2β
γ(1+β)−β+1

;

set µ := βu − v, λ := βv − u, β′ := β − 1, ω := β(u − v) (then β(v − u) = −ω)
c′{1,3} := c{1,3} 7−→ [µ, β′γuv + ω, β′uv − ω, β′γuv + ω],

c′{2,3} := c{2,3} 7−→ [λ, β′γuv − ω, β′uv − ω, β′γuv − ω],

a′3 := c{3,4} 7−→ [λ, β′γuv − ω, β′uv + ω, β′γuv + ω],
b′3 := c{3,5} 7−→ [µ, β′γuv + ω, β′uv + ω, β′γuv − ω].

(3)

A direct though tedious computation shows that the map F embeds R5 into P.
Thus our construction proves that the

(

215 353

)

-multiveblen configuration R5 can be
embedded into a projective space.

The above embedding can be further extended to an embedding of R7 (its
soundness was verified with the help of Maple V, ρ 6= 1,−1, 2,−2, u

v , v
u , β, βρ 6= 1,

and similar); we put:

F(a7) = [1, w1, w2, w3], F(b7) = [1, ρw1, ρw2, ρw3],
F(b6) = [1, w1,−w2, w3], F(a6) = [1, ρw1,−ρw2, ρw3].
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After that the coordinates of the points F(c{i,j}) with i ∈ {6, 7} can be directly
computed.

We see that the above procedure can be continued by adding suitable pairs
a8, b8, a9, b9, . . . a2k , b2k, a2k+1, b2k+1 on lines through q, which should yield an
embedding of R2k+1 into P. ©

Construction 2.10. Now, we shall extend the embedding of R4 given in the proof
of 2.7 to a projective embedding of R6. First, we note that the substructure of R5

spanned by the points on the lines through q and a1, a2, a4, a5 is exactly R4; its
embedding (2) given in the proof of 2.7 differs from that of 2.9 in the ordering of
some symbols in pairs ai, bi.

Let F be defined as in 2.9. Let us write σi = i for for i ≤ 2 and σi = i + 1
for 2 < i ≤ 6 and let us label the points on the lines of R6 through p3 = F(q)
by ai, bi in a standard way. It is a matter of simple (computer-aided) computation
that the map G defined by G(ai) = F(aσi), G(bi) = F(bσi), G(c{i,j}) = F(c{σi,σj})
is an embedding of R6 into P.

We see that this embedding can be further extended to an embedding of R2k

to P. ©

Finally we obtain our main result

Theorem 2.11. Let M be a regular multiveblen configuration. If M can be embedded
into a projective space then either M ∼= G2(n) or M ∼= Rn for some integer n.

Proof. Let M be defined by (1); we define inductively

M0 := G2(X0), Mj := M
pj

Xj−1
⊲
Pj−1

Mj−1,

and then M = Mk. Recall that the structure Mj is defined on ℘
2(Xj). Let m = |X0|

and let n ≥ 4 be the degree of a point in M. From the construction, |Xk| = m+ 2k;
we have n = (m + 2k) − 2 and thus |Xk| = n + 2. From the assumptions, the
graph Pk−1 determines all the graphs Pj with j < k − 1.

Clearly, if Mk can be projectively embedded, its subspace Mk−1 can be pro-
jectively embedded as well; continuing we obtain that Mj can be projectively
embedded for every j = 0, . . . , k − 1.

If k = 1 then for m < 4 our claim is evident: M is either the Veblen configu-

ration G2(4) (m = 2), or the Desargues configuration G2(5) = M
p1

X0
⊲
KX0

G2(X0) =

M3⊲K3
G2(3), or the Veronese configuration Vo = M3⊲N3

G2(3). If m ≥ 4 from 2.5

we get that M admits a projective embedding if and only if M ∼= G2(X0 ∪ p) for
some two-element set p.

If k > 1 we apply consecutively 2.8 to determine possible Pj for j = 0, . . . , k −
2. Assume that there are distinct i0, j0 ∈ X0 with X′ := {i0, j0} /∈ P0. In view of
2.8 we have m = |X0| ≤ 3; from 2.7, 2.8, and 2.9 we infer that either M2 is R4

(m = 2, M1
∼= PB(2)) or it is R5 (m = 3, M1

∼= Vo). In both cases X′ /∈ Pl for
l > 0 but |Xl | > 3 so, in view of 2.8, the graph Pl has the form ℘

2(Xl) \ X′ and
Ml = Rm+2l. (In accordance with 2.9 and 2.10 structures Ml with l > 2 can be
projectively embedded and after all M can be projectively embedded.)
Finally, suppose that there is a pair s := {i, j} of distinct elements of Xl such that
s /∈ Pl for some l > 0 but Pl ′ = KXl′

for all l′ < l. This yields, in particular, that
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Ml ′+1 = G2(Xl ′) for every l′ < l and thus Ml = G2(Xl−1). If l = k − 1 from
2.5 we obtain that necessarily Mk

∼= G2(Xl). Assume that l < k − 1 and have
a look at Ml+1. Applying 2.8 we obtain |Xl | ≤ 3, which is impossible and thus
Pl = KXl

.

A Starting from another representation of the Veblen configu-

ration

The construction of a multiveblen configuration as defined in (1) can also begin
with the representation of the Veblen configuration H in the form H = G∗

2(4) =
〈℘2(X),℘1(X),⊃〉 (where |X| = 4, cf. [10]). To complete our results we prove

Proposition A.1. Neither M4⊲K4
G∗

2(4) nor M4⊲L4
G∗

2(4) can be embedded into a Desar-

guesian projective space.

Proof. Let X = {1, 2, 3, 4} and P be a graph defined on X such that P ≈ K4 or
P ≈ L4. Say, P = KX or P =

{

{1, 2}, {2, 3}, {3, 4}
}

. Consider M = MX⊲PG∗
2(X).

Suppose that M is embedded into a Desarguesian projective space P. In any
case PfY ≈ KY, where Y = {1, 2, 4}. Consequently, {1, 2}, {1, 4} and {2, 4}
are collinear in P. From the definition of G∗

2(X) the points {1, 2}, {1, 4}, {1, 3}
are collinear as well and thus all the points of G∗

2(X) should lie on one line of P,
which is impossible.

Proposition A.2. The structure M4⊲N4
G∗

2(4) can be embedded into a Desarguesian pro-

jective space.6

Moreover, when M4⊲N4
G∗

2(4) is embedded into a Desarguesian projective space P

then the characteristic of the coordinate field of P is 2, that is P satisfies the projective
Fano axiom.

Proof. Write R∗
4 := M

p
X⊲NX

G∗
2(X), where X = {1, 2, 3, 4}. Let us start with an

analysis of possible embeddings of R∗
4 into a projective space P. As usual we

write c∗{i,j} for the common point of ai, aj, bi, bj, which exists in P. Observing the

triangles a1, a2, b3 and b1, b2, a3 of P with the perspective center p we obtain that
the points c{1,3}, c{2,3} and c∗{1,2} are collinear; similarly, the points c{1,4}, c{2,4},

c∗
{1,2}

are collinear, which gives c∗
{1,2}

= c{3,4}. With the same technique we obtain

c{i,j} = c∗{i′,j′} whenever {i, j, i′, j′} = X. (4)

Therefore, the given points yield an embedding of M
p
X⊲KX

G2(X) as well – it suf-

fices to note that with κ(u) = X \ u for u ∈ ℘(X) we obtain: cu1
, cu2, cu3 is a line of

G∗
2(X) if and only if c∗u1

, c∗u2
, c∗u3

is a line of G2(X). And conversely, every projec-

tive embedding of M
p
X⊲KX

G2(X) which satisfies (4) yields a projective embedding

of R∗
4 .

6From a more general perspective, the existence of the required embedding is a conse-
quence of some results on linear completions of multiveblen configurations: M4⊲N4

G∗
2(4) and

M4⊲K4
G2(4) = G2(6) have the common linear completion: the projective Fano 3-space, cf. [12].
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Next, since c{3,4} a1, a2, a3, b4, c{2,4} a2, b4, a1, a3, and c{1,4} a1, b4, a2, a3 the
points a1, a2, a3, b4 yield in P a quadrangle with the diagonal points c{1,4}, c{2,4},
c{3,4}, which are collinear and thus P contains a closed Fano configuration.

Finally, to construct an embedding of R∗
4 into a Desarguesian projective space

it suffices to take a closed Fano configuration in a projective space P (thus coor-
dinatized by a field with characteristic 2; to ensure that the procedure works one
can assume that dim(P) > 2), a point p not on a plane that contains this configu-
ration, and an image of this Fano configuration under suitable homology.

However, no series of projectively embeddable iterated multiveblen configu-
rations may start from G∗

2(4).

Proposition A.3. Let X0 = {1, 2, 3, 4}, p1 = {5, 6}, X1 = X0 ∪ p1, and p2 = {7, 8}.

Assume that P0 ≈ NX0
. The structure M

p2

X1
⊲
P1
R∗

4 = M
p2

X1
⊲
P1

(

M
p1

X0
⊲
P0

G∗
2(X0)

)

cannot

be embedded into a Desarguesian projective space for any graph P1 defined on X1.

Proof. Write M = M
p2

X1
⊲
P1

(

M
p1

X0
⊲
P0

G∗
2(X0)

)

. Suppose that M is embedded into a

Desarguesian projective space P, then from A.2 P satisfies the Fano axiom, be-
cause M contains R∗

4 embedded into P. Observe the quadrangle c{1,5}, c{1,6},

c{2,5}, c{2,6}. Its diagonal points in P are the following: p1 = c{5,6}, c{1,2}, and

c∗{1,2} = c{3,4}; thus L(p1, c{1,2}, c{3,4}). Analogously we obtain L(p1, c{1,3}, c{2,4}),

and therefore the point p1 is the common point of the lines c{1,2}, c{3,4} and

c{1,3}, c{2,4}. Next, let us observe the substructure N of M spanned by the lines

that pass through p2 and have numbers in X0; it is embedded into the same pro-

jective space P and it is seen that N = M
p2

X0
⊲
P1fX0

G∗
2(X0). This yields that (in

particular) P1 fX0 ≈ NX0
; what is more important, analogous reasoning ap-

plied to the quadrangles a1, a2, b1, b2 and a1, a3, b1, b3 gives that p2 is the common
point of the lines c{1,2}, c{3,4} and c{1,3}, c{2,4}. This finally gives p1 = p2, which is
impossible.
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